Require Import Coq.ZArith.Int. Require Import Coq.Lists.ListSet. Require Import Coq.Vectors.VectorDef. Require Import Coq.Vectors.Fin. Require Import Coq.Program.Equality. Require Import Coq.Logic.Eqdep_dec. Require Import Coq.Arith.Peano_dec. Module DayEight (Import M:Int). (* We need to coerce natural numbers into integers to add them. *) Parameter nat_to_t : nat -> t. (* We need a way to convert integers back into finite sets. *) Parameter clamp : forall {n}, t -> option (Fin.t n). Definition fin := Fin.t. (* The opcode of our instructions. *) Inductive opcode : Type := | add | nop | jmp. (* The result of running a program is either the accumulator or an infinite loop error. In the latter case, we return the set of instructions that we tried. *) Inductive run_result {n : nat} : Type := | Ok : t -> run_result | Fail : set (fin n) -> run_result. Definition state n : Type := (fin (S n) * set (fin n) * t). (* An instruction is a pair of an opcode and an argument. *) Definition inst : Type := (opcode * t). (* An input is a bounded list of instructions. *) Definition input (n : nat) := VectorDef.t inst n. (* 'indices' represents the list of instruction addresses, which are used for calculating jumps. *) Definition indices (n : nat) := VectorDef.t (fin n) n. (* Compute the destination jump index, an integer. *) Definition jump_t {n} (pc : fin n) (off : t) : t := M.add (nat_to_t (proj1_sig (to_nat pc))) off. (* Compute a destination index that's valid. Not all inputs are valid, so this may fail. *) Definition valid_jump_t {n} (pc : fin n) (off : t) : option (fin (S n)) := @clamp (S n) (jump_t pc off). Fixpoint weaken_one {n} (f : fin n) : fin (S n) := match f with | F1 => F1 | FS f' => FS (weaken_one f') end. (* One modification: we really want to use 'allowed' addresses, a set that shrinks as the program continues, rather than 'visited' addresses, a set that increases as the program continues. *) Inductive step_noswap {n} : input n -> state n -> state n -> Prop := | step_noswap_add : forall inp pc' v acc t, nth inp pc' = (add, t) -> set_mem Fin.eq_dec pc' v = true -> step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, M.add acc t) | step_noswap_nop : forall inp pc' v acc t, nth inp pc' = (nop, t) -> set_mem Fin.eq_dec pc' v = true -> step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, acc) | step_noswap_jmp : forall inp pc' pc'' v acc t, nth inp pc' = (jmp, t) -> set_mem Fin.eq_dec pc' v = true -> valid_jump_t pc' t = Some pc'' -> step_noswap inp (weaken_one pc', v, acc) (pc'', set_remove Fin.eq_dec pc' v, acc). Fixpoint nat_to_fin (n : nat) : fin (S n) := match n with | O => F1 | S n' => FS (nat_to_fin n') end. Inductive run_noswap {n} : input n -> state n -> state n -> Prop := | run_noswap_ok : forall inp v acc, run_noswap inp (nat_to_fin n, v, acc) (nat_to_fin n, v, acc) | run_noswap_fail : forall inp pc' v acc, set_mem Fin.eq_dec pc' v = false -> run_noswap inp (weaken_one pc', v, acc) (weaken_one pc', v, acc) | run_noswap_trans : forall inp st st' st'', step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''. Inductive valid_inst {n} : inst -> fin n -> Prop := | valid_inst_add : forall t f, valid_inst (add, t) f | valid_inst_nop : forall t f f', valid_jump_t f t = Some f' -> valid_inst (nop, t) f | valid_inst_jmp : forall t f f', valid_jump_t f t = Some f' -> valid_inst (jmp, t) f. (* An input is valid if all its instructions are valid. *) Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n), valid_inst (nth inp pc) pc. Lemma fin_big_or_small : forall {n} (f : fin (S n)), (f = nat_to_fin n) \/ (exists (f' : fin n), f = weaken_one f'). Proof. (* Hey, looks like the creator of Fin provided us with nice inductive principles. Using Coq's default `induction` breaks here. Merci, Pierre! *) apply Fin.rectS. - intros n. destruct n. + left. reflexivity. + right. exists F1. auto. - intros n p IH. destruct IH. + left. rewrite H. reflexivity. + right. destruct H as [f' Heq]. exists (FS f'). simpl. rewrite Heq. reflexivity. Qed. Lemma set_add_idempotent : forall {A:Type} (Aeq_dec : forall x y : A, { x = y } + { x <> y }) (a : A) (s : set A), set_mem Aeq_dec a s = true -> set_add Aeq_dec a s = s. Proof. intros A Aeq_dec a s Hin. induction s. - inversion Hin. - simpl. simpl in Hin. destruct (Aeq_dec a a0). + reflexivity. + simpl. rewrite IHs; auto. Qed. Theorem set_add_append : forall {A:Type} (Aeq_dec : forall x y : A, {x = y } + { x <> y }) (a : A) (s : set A), set_mem Aeq_dec a s = false -> set_add Aeq_dec a s = List.app s (List.cons a List.nil). Proof. induction s. - reflexivity. - intros Hnm. simpl in Hnm. destruct (Aeq_dec a a0) eqn:Heq_dec. + inversion Hnm. + simpl. rewrite Heq_dec. rewrite IHs. reflexivity. assumption. Qed. Lemma list_append_or_nil : forall {A:Type} (l : list A), l = List.nil \/ exists l' a, l = List.app l' (List.cons a List.nil). Proof. induction l. - left. reflexivity. - right. destruct IHl. + exists List.nil. exists a. rewrite H. reflexivity. + destruct H as [l' [a' H]]. exists (List.cons a l'). exists a'. rewrite H. reflexivity. Qed. Theorem list_append_induction : forall {A:Type} (P : list A -> Prop), P List.nil -> (forall (a : A) (l : list A), P l -> P (List.app l (List.cons a (List.nil)))) -> forall l, P l. Proof. Admitted. Theorem set_induction : forall {A:Type} (Aeq_dec : forall x y : A, { x = y } + {x <> y }) (P : set A -> Prop), P (@empty_set A) -> (forall (a : A) (s' : set A), P s' -> P (set_add Aeq_dec a s')) -> forall (s : set A), P s. Proof. Admitted. Lemma weaken_one_inj : forall n (f1 f2 : fin n), (weaken_one f1 = weaken_one f2 -> f1 = f2). Proof. remember (fun {n} (a b : fin n) => weaken_one a = weaken_one b -> a = b) as P. (* Base case for rect2 *) assert (forall n, @P (S n) F1 F1). {rewrite HeqP. intros n Heq. reflexivity. } (* 'Impossible' cases for rect2. *) assert (forall {n} (f : fin n), P (S n) F1 (FS f)). {rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. } assert (forall {n} (f : fin n), P (S n) (FS f) F1). {rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. } (* Recursive case for rect2. *) assert (forall {n} (f g : fin n), P n f g -> P (S n) (FS f) (FS g)). {rewrite HeqP. intros n f g IH Heq. simpl in Heq. injection Heq as Heq'. apply inj_pair2_eq_dec in Heq'. - rewrite IH. reflexivity. assumption. - apply eq_nat_dec. } (* Actually apply recursion. *) (* This can't be _the_ way to do this. *) intros n. specialize (@Fin.rect2 P H H0 H1 H2 n) as Hind. rewrite HeqP in Hind. apply Hind. Qed. Lemma weaken_neq_to_fin : forall {n} (f : fin (S n)), nat_to_fin (S n) <> weaken_one f. Proof. apply Fin.rectS; intros n Heq. - inversion Heq. - intros IH. simpl. intros Heq'. injection Heq' as Hinj. apply inj_pair2_eq_dec in Hinj. + simpl in IH. apply IH. apply Hinj. + apply eq_nat_dec. Qed. Lemma add_pc_safe_step : forall {n} (inp : input n) (pc : fin (S n)) i is acc st', step_noswap inp (pc, is, acc) st' -> exists st'', step_noswap inp (pc, (set_add Fin.eq_dec i is), acc) st''. Proof. intros n inp pc' i is acc st' Hstep. inversion Hstep. - eexists. apply step_noswap_add. apply H4. apply set_mem_correct2. apply set_add_intro1. apply set_mem_correct1 with Fin.eq_dec. assumption. - eexists. eapply step_noswap_nop. apply H4. apply set_mem_correct2. apply set_add_intro1. apply set_mem_correct1 with Fin.eq_dec. assumption. - eexists. eapply step_noswap_jmp. apply H3. apply set_mem_correct2. apply set_add_intro1. apply set_mem_correct1 with Fin.eq_dec. assumption. apply H6. Qed. Lemma remove_pc_safe_run : forall {n} (inp : input n) i pc v acc st', run_noswap inp (pc, set_add Fin.eq_dec i v, acc) st' -> exists st'', run_noswap inp (pc, v, acc) st''. Proof. intros n inp i pc v acc st' Hr. dependent induction Hr. - eexists. eapply run_noswap_ok. - eexists. eapply run_noswap_fail. apply set_mem_complete1 in H. apply set_mem_complete2. intros Hin. apply H. apply set_add_intro. right. apply Hin. - inversion H; subst; destruct (set_mem Fin.eq_dec pc' v) eqn:Hm. Admitted. Lemma add_pc_safe_run : forall {n} (inp : input n) i pc v acc st', run_noswap inp (pc, v, acc) st' -> exists st'', run_noswap inp (pc, (set_add Fin.eq_dec i v), acc) st''. Proof. intros n inp i pc v acc st' Hr. destruct (set_mem Fin.eq_dec i v) eqn:Hm. (* If i is already in the set, nothing changes. *) rewrite set_add_idempotent. exists st'. assumption. assumption. (* Otherwise, the behavior might have changed.. *) destruct (fin_big_or_small pc). - (* If we're done, we're done no matter what. *) eexists. rewrite H. eapply run_noswap_ok. - (* The PC points somewhere inside. We tried (and maybe failed) to execute and instruction. The challenging part is that adding i may change the outcome from 'fail' to 'ok' *) destruct H as [pc' Heq]. generalize dependent st'. induction v using (@set_induction (fin n) Fin.eq_dec); intros st' Hr. + (* Our set of valid states is nearly empty. One step, and it runs dry. *) simpl. destruct (Fin.eq_dec pc' i) eqn:Heq_dec. * (* The PC is the one allowed state. *) remember (nth inp pc') as h. destruct h. destruct o. { (* Addition. *) destruct (fin_big_or_small (FS pc')). - (* The additional step puts as at the end. *) eexists. eapply run_noswap_trans. + rewrite Heq. apply step_noswap_add. symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity. + rewrite H. apply run_noswap_ok. - (* The additional step puts us somewhere else. *) destruct H as [f' H]. eexists. eapply run_noswap_trans. + rewrite Heq. apply step_noswap_add. symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity. + rewrite H. apply run_noswap_fail. simpl. rewrite Heq_dec. reflexivity. } { (* No-op *) admit. } { (* Jump*) admit. } * (* The PC is not. We're done. *) eexists. rewrite Heq. eapply run_noswap_fail. simpl. rewrite Heq_dec. reflexivity. + destruct (set_mem Fin.eq_dec a v) eqn:Hm'. * unfold fin. rewrite (set_add_idempotent Fin.eq_dec a). { apply step_noswap_nop. - symmetry. apply Heqh. - simpl. rewrite Heq_dec. reflexivity. } (* dependent induction Hr; subst. + (* We can't be in the OK state, since we already covered that earlier. *) destruct n. inversion pc'. apply weaken_neq_to_fin in Heq as []. + apply weaken_one_inj in Heq as Hs. subst. destruct (Fin.eq_dec pc'0 i) eqn:Heq_dec. * admit. * eexists. eapply run_noswap_fail. assert (~set_In pc'0 v). { apply (set_mem_complete1 Fin.eq_dec). assumption. } assert (~set_In pc'0 (List.cons i List.nil)). { simpl. intros [Heq'|[]]. apply n0. auto. } assert (~set_In pc'0 (set_union Fin.eq_dec v (List.cons i List.nil))). { intros Hin. apply set_union_iff in Hin as [Hf|Hf]. - apply H0. apply Hf. - apply H1. apply Hf. } simpl in H2. apply set_mem_complete2. assumption. + apply (add_pc_safe_step _ _ i) in H as [st''' Hr']. eexists. eapply run_noswap_trans. apply Hr'. destruct st' as [[pc'' v''] acc'']. specialize (IHHr i pc'' v'' acc'').*) (* intros n inp i pc v. generalize dependent i. generalize dependent pc. induction v; intros pc i acc st Hr. - inversion Hr; subst. + eexists. apply run_noswap_ok. + destruct (Fin.eq_dec pc' i) eqn:Heq_dec. * admit. * eexists. apply run_noswap_fail. simpl. rewrite Heq_dec. reflexivity. + inversion H; subst; simpl in H7; inversion H7. - inversion Hr; subst. + eexists. apply run_noswap_ok. + destruct (Fin.eq_dec pc' i) eqn:Heq_dec. * admit. * eexists. apply run_noswap_fail. simpl. rewrite Heq_dec. simpl in H4. apply H4. + destruct (nth inp pc') as [op t]. *) Admitted. Theorem valid_input_terminates : forall n (inp : input n) st, valid_input inp -> exists st', run_noswap inp st st'. Proof. intros n inp st. destruct st as [[pc is] acc]. generalize dependent inp. generalize dependent pc. generalize dependent acc. induction is using (@set_induction (fin n) Fin.eq_dec); intros acc pc inp Hv; (* The PC may point past the end of the array, or it may not. *) destruct (fin_big_or_small pc); (* No matter what, if it's past the end of the array, we're done, *) try (eexists (pc, _, acc); rewrite H; apply run_noswap_ok). - (* It's not past the end of the array, and the 'allowed' list is empty. Evaluation fails. *) destruct H as [f' Heq]. exists (pc, Datatypes.nil, acc). rewrite Heq. apply run_noswap_fail. reflexivity. - (* We're not past the end of the array. However, adding a new valid index still guarantees evaluation terminates. *) specialize (IHis acc pc inp Hv) as [st' Hr]. apply add_pc_safe_run with st'. assumption. Qed. (* (* It's not past the end of the array, and we're in the inductive case on is. *) destruct H as [pc' Heq]. destruct (Fin.eq_dec pc' a) eqn:Heq_dec. + (* This PC is allowed. *) (* That must mean we have a non-empty list. *) remember (nth inp pc') as h. destruct h as [op t]. (* Unfortunately, we can't do eexists at the top level, since that will mean the final state has to be the same for every op. *) destruct op. (* Addition. *) { destruct (IHis (M.add acc t) (FS pc') inp Hv) as [st' Htrans]. eexists. eapply run_noswap_trans. rewrite Heq. apply step_noswap_add. - symmetry. apply Heqh. - simpl. rewrite Heq_dec. reflexivity. - simpl. rewrite Heq_dec. apply Htrans. } (* No-ops *) { destruct (IHis acc (FS pc') inp Hv) as [st' Htrans]. eexists. eapply run_noswap_trans. rewrite Heq. apply step_noswap_nop with t. - symmetry. apply Heqh. - simpl. rewrite Heq_dec. reflexivity. - simpl. rewrite Heq_dec. apply Htrans. } (* Jump. *) { (* A little more interesting. We need to know that the jump is valid. *) assert (Hv' : valid_inst (jmp, t) pc'). { specialize (Hv pc'). rewrite <- Heqh in Hv. assumption. } inversion Hv'. (* Now, proceed as usual. *) destruct (IHis acc f' inp Hv) as [st' Htrans]. eexists. eapply run_noswap_trans. rewrite Heq. apply step_noswap_jmp with t. - symmetry. apply Heqh. - simpl. rewrite Heq_dec. reflexivity. - apply H0. - simpl. rewrite Heq_dec. apply Htrans. } + (* The top PC is not allowed. *) specialize (IHis acc pc inp Hv) as [st' Hr]. apply add_pc_safe_run with st'. assumption. *) Qed. (* Stoppped here. *) Admitted. End DayEight.