Require Import Coq.ZArith.Int. Require Import Coq.Lists.ListSet. Require Import Coq.Vectors.VectorDef. Require Import Coq.Vectors.Fin. Module DayEight (Import M:Int). (* We need to coerce natural numbers into integers to add them. *) Parameter nat_to_t : nat -> t. (* We need a way to convert integers back into finite sets. *) Parameter clamp : forall {n}, t -> option (Fin.t n). Definition fin := Fin.t. (* The opcode of our instructions. *) Inductive opcode : Type := | add | nop | jmp. (* The result of running a program is either the accumulator or an infinite loop error. In the latter case, we return the set of instructions that we tried. *) Inductive run_result {n : nat} : Type := | Ok : t -> run_result | Fail : set (fin n) -> run_result. Definition state n : Type := (fin (S n) * set (fin n) * t). (* An instruction is a pair of an opcode and an argument. *) Definition inst : Type := (opcode * t). (* An input is a bounded list of instructions. *) Definition input (n : nat) := VectorDef.t inst n. (* 'indices' represents the list of instruction addresses, which are used for calculating jumps. *) Definition indices (n : nat) := VectorDef.t (fin n) n. (* Compute the destination jump index, an integer. *) Definition jump_t {n} (pc : fin n) (off : t) : t := M.add (nat_to_t (proj1_sig (to_nat pc))) off. (* Compute a destination index that's valid. Not all inputs are valid, so this may fail. *) Definition valid_jump_t {n} (pc : fin n) (off : t) : option (fin (S n)) := @clamp (S n) (jump_t pc off). Definition weaken_one {n} (f : fin n) : fin (S n). Proof. apply (@cast (n + 1)). + apply L. apply f. + rewrite <- plus_n_Sm. rewrite <- plus_n_O. reflexivity. Defined. Inductive step_noswap {n} : input n -> state n -> state n -> Prop := | step_noswap_acc : forall inp pc' v acc t, nth inp pc' = (add, t) -> ~ set_mem Fin.eq_dec pc' v = true -> step_noswap inp (weaken_one pc', v, acc) (FS pc', set_add Fin.eq_dec pc' v, M.add acc t) | step_noswap_nop : forall inp pc' v acc t, nth inp pc' = (nop, t) -> ~ set_mem Fin.eq_dec pc' v = true -> step_noswap inp (weaken_one pc', v, acc) (FS pc', set_add Fin.eq_dec pc' v, acc) | step_noswap_jmp : forall inp pc' pc'' v acc t, nth inp pc' = (jmp, t) -> ~ set_mem Fin.eq_dec pc' v = true -> valid_jump_t pc' t = Some pc'' -> step_noswap inp (weaken_one pc', v, acc) (pc'', set_add Fin.eq_dec pc' v, acc). Fixpoint nat_to_fin (n : nat) : fin (S n) := match n with | O => F1 | S n' => FS (nat_to_fin n') end. Inductive run_noswap {n} : input n -> state n -> state n -> Prop := | run_noswap_ok : forall inp v acc, run_noswap inp (nat_to_fin n, v, acc) (nat_to_fin n, v, acc) | run_noswap_fail : forall inp pc' v acc, set_mem Fin.eq_dec pc' v = true -> run_noswap inp (weaken_one pc', v, acc) (weaken_one pc', v, acc) | run_noswap_trans : forall inp st st' st'', step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''. Inductive valid_inst {n} : inst -> fin n -> Prop := | valid_inst_add : forall t f, valid_inst (add, t) f | valid_inst_nop : forall t f f', valid_jump_t f t = Some f' -> valid_inst (nop, t) f | valid_inst_jmp : forall t f f', valid_jump_t f t = Some f' -> valid_inst (jmp, t) f. (* An input is valid if all its instructions are valid. *) Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n), valid_inst (nth inp pc) pc. Theorem valid_input_terminates : forall n (inp : input n) st, valid_input inp -> exists st', run_noswap inp st st'. Proof. (* Stoppped here. *) Admitted. End DayEight.