#ifndef JOS_INC_MMU_H #define JOS_INC_MMU_H /* * This file contains definitions for the x86 memory management unit (MMU), * including paging- and segmentation-related data structures and constants, * the %cr0, %cr4, and %eflags registers, and traps. */ /* * * Part 1. Paging data structures and constants. * */ // A linear address 'la' has a three-part structure as follows: // // +--------10------+-------10-------+---------12----------+ // | Page Directory | Page Table | Offset within Page | // | Index | Index | | // +----------------+----------------+---------------------+ // \--- PDX(la) --/ \--- PTX(la) --/ \---- PGOFF(la) ----/ // \---------- PGNUM(la) ----------/ // // The PDX, PTX, PGOFF, and PGNUM macros decompose linear addresses as shown. // To construct a linear address la from PDX(la), PTX(la), and PGOFF(la), // use PGADDR(PDX(la), PTX(la), PGOFF(la)). // page number field of address #define PGNUM(la) (((uintptr_t) (la)) >> PTXSHIFT) // page directory index #define PDX(la) ((((uintptr_t) (la)) >> PDXSHIFT) & 0x3FF) // page table index #define PTX(la) ((((uintptr_t) (la)) >> PTXSHIFT) & 0x3FF) // offset in page #define PGOFF(la) (((uintptr_t) (la)) & 0xFFF) // construct linear address from indexes and offset #define PGADDR(d, t, o) ((void*) ((d) << PDXSHIFT | (t) << PTXSHIFT | (o))) // Page directory and page table constants. #define NPDENTRIES 1024 // page directory entries per page directory #define NPTENTRIES 1024 // page table entries per page table #define PGSIZE 4096 // bytes mapped by a page #define PGSHIFT 12 // log2(PGSIZE) #define PTSIZE (PGSIZE*NPTENTRIES) // bytes mapped by a page directory entry #define PTSHIFT 22 // log2(PTSIZE) #define PTXSHIFT 12 // offset of PTX in a linear address #define PDXSHIFT 22 // offset of PDX in a linear address // Page table/directory entry flags. #define PTE_P 0x001 // Present #define PTE_W 0x002 // Writeable #define PTE_U 0x004 // User #define PTE_PWT 0x008 // Write-Through #define PTE_PCD 0x010 // Cache-Disable #define PTE_A 0x020 // Accessed #define PTE_D 0x040 // Dirty #define PTE_PS 0x080 // Page Size #define PTE_G 0x100 // Global // The PTE_AVAIL bits aren't used by the kernel or interpreted by the // hardware, so user processes are allowed to set them arbitrarily. #define PTE_AVAIL 0xE00 // Available for software use // Flags in PTE_SYSCALL may be used in system calls. (Others may not.) #define PTE_SYSCALL (PTE_AVAIL | PTE_P | PTE_W | PTE_U) // Address in page table or page directory entry #define PTE_ADDR(pte) ((physaddr_t) (pte) & ~0xFFF) // Control Register flags #define CR0_PE 0x00000001 // Protection Enable #define CR0_MP 0x00000002 // Monitor coProcessor #define CR0_EM 0x00000004 // Emulation #define CR0_TS 0x00000008 // Task Switched #define CR0_ET 0x00000010 // Extension Type #define CR0_NE 0x00000020 // Numeric Errror #define CR0_WP 0x00010000 // Write Protect #define CR0_AM 0x00040000 // Alignment Mask #define CR0_NW 0x20000000 // Not Writethrough #define CR0_CD 0x40000000 // Cache Disable #define CR0_PG 0x80000000 // Paging #define CR4_PCE 0x00000100 // Performance counter enable #define CR4_MCE 0x00000040 // Machine Check Enable #define CR4_PSE 0x00000010 // Page Size Extensions #define CR4_DE 0x00000008 // Debugging Extensions #define CR4_TSD 0x00000004 // Time Stamp Disable #define CR4_PVI 0x00000002 // Protected-Mode Virtual Interrupts #define CR4_VME 0x00000001 // V86 Mode Extensions // Eflags register #define FL_CF 0x00000001 // Carry Flag #define FL_PF 0x00000004 // Parity Flag #define FL_AF 0x00000010 // Auxiliary carry Flag #define FL_ZF 0x00000040 // Zero Flag #define FL_SF 0x00000080 // Sign Flag #define FL_TF 0x00000100 // Trap Flag #define FL_IF 0x00000200 // Interrupt Flag #define FL_DF 0x00000400 // Direction Flag #define FL_OF 0x00000800 // Overflow Flag #define FL_IOPL_MASK 0x00003000 // I/O Privilege Level bitmask #define FL_IOPL_0 0x00000000 // IOPL == 0 #define FL_IOPL_1 0x00001000 // IOPL == 1 #define FL_IOPL_2 0x00002000 // IOPL == 2 #define FL_IOPL_3 0x00003000 // IOPL == 3 #define FL_NT 0x00004000 // Nested Task #define FL_RF 0x00010000 // Resume Flag #define FL_VM 0x00020000 // Virtual 8086 mode #define FL_AC 0x00040000 // Alignment Check #define FL_VIF 0x00080000 // Virtual Interrupt Flag #define FL_VIP 0x00100000 // Virtual Interrupt Pending #define FL_ID 0x00200000 // ID flag // Page fault error codes #define FEC_PR 0x1 // Page fault caused by protection violation #define FEC_WR 0x2 // Page fault caused by a write #define FEC_U 0x4 // Page fault occured while in user mode /* * * Part 2. Segmentation data structures and constants. * */ #ifdef __ASSEMBLER__ /* * Macros to build GDT entries in assembly. */ #define SEG_NULL \ .word 0, 0; \ .byte 0, 0, 0, 0 #define SEG(type,base,lim) \ .word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \ .byte (((base) >> 16) & 0xff), (0x90 | (type)), \ (0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff) #else // not __ASSEMBLER__ #include // Segment Descriptors struct Segdesc { unsigned sd_lim_15_0 : 16; // Low bits of segment limit unsigned sd_base_15_0 : 16; // Low bits of segment base address unsigned sd_base_23_16 : 8; // Middle bits of segment base address unsigned sd_type : 4; // Segment type (see STS_ constants) unsigned sd_s : 1; // 0 = system, 1 = application unsigned sd_dpl : 2; // Descriptor Privilege Level unsigned sd_p : 1; // Present unsigned sd_lim_19_16 : 4; // High bits of segment limit unsigned sd_avl : 1; // Unused (available for software use) unsigned sd_rsv1 : 1; // Reserved unsigned sd_db : 1; // 0 = 16-bit segment, 1 = 32-bit segment unsigned sd_g : 1; // Granularity: limit scaled by 4K when set unsigned sd_base_31_24 : 8; // High bits of segment base address }; // Null segment #define SEG_NULL { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } // Segment that is loadable but faults when used #define SEG_FAULT { 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0 } // Normal segment #define SEG(type, base, lim, dpl) \ { ((lim) >> 12) & 0xffff, (base) & 0xffff, ((base) >> 16) & 0xff, \ type, 1, dpl, 1, (unsigned) (lim) >> 28, 0, 0, 1, 1, \ (unsigned) (base) >> 24 } #define SEG16(type, base, lim, dpl) (struct Segdesc) \ { (lim) & 0xffff, (base) & 0xffff, ((base) >> 16) & 0xff, \ type, 1, dpl, 1, (unsigned) (lim) >> 16, 0, 0, 1, 0, \ (unsigned) (base) >> 24 } #endif /* !__ASSEMBLER__ */ // Application segment type bits #define STA_X 0x8 // Executable segment #define STA_E 0x4 // Expand down (non-executable segments) #define STA_C 0x4 // Conforming code segment (executable only) #define STA_W 0x2 // Writeable (non-executable segments) #define STA_R 0x2 // Readable (executable segments) #define STA_A 0x1 // Accessed // System segment type bits #define STS_T16A 0x1 // Available 16-bit TSS #define STS_LDT 0x2 // Local Descriptor Table #define STS_T16B 0x3 // Busy 16-bit TSS #define STS_CG16 0x4 // 16-bit Call Gate #define STS_TG 0x5 // Task Gate / Coum Transmitions #define STS_IG16 0x6 // 16-bit Interrupt Gate #define STS_TG16 0x7 // 16-bit Trap Gate #define STS_T32A 0x9 // Available 32-bit TSS #define STS_T32B 0xB // Busy 32-bit TSS #define STS_CG32 0xC // 32-bit Call Gate #define STS_IG32 0xE // 32-bit Interrupt Gate #define STS_TG32 0xF // 32-bit Trap Gate /* * * Part 3. Traps. * */ #ifndef __ASSEMBLER__ // Task state segment format (as described by the Pentium architecture book) struct Taskstate { uint32_t ts_link; // Old ts selector uintptr_t ts_esp0; // Stack pointers and segment selectors uint16_t ts_ss0; // after an increase in privilege level uint16_t ts_padding1; uintptr_t ts_esp1; uint16_t ts_ss1; uint16_t ts_padding2; uintptr_t ts_esp2; uint16_t ts_ss2; uint16_t ts_padding3; physaddr_t ts_cr3; // Page directory base uintptr_t ts_eip; // Saved state from last task switch uint32_t ts_eflags; uint32_t ts_eax; // More saved state (registers) uint32_t ts_ecx; uint32_t ts_edx; uint32_t ts_ebx; uintptr_t ts_esp; uintptr_t ts_ebp; uint32_t ts_esi; uint32_t ts_edi; uint16_t ts_es; // Even more saved state (segment selectors) uint16_t ts_padding4; uint16_t ts_cs; uint16_t ts_padding5; uint16_t ts_ss; uint16_t ts_padding6; uint16_t ts_ds; uint16_t ts_padding7; uint16_t ts_fs; uint16_t ts_padding8; uint16_t ts_gs; uint16_t ts_padding9; uint16_t ts_ldt; uint16_t ts_padding10; uint16_t ts_t; // Trap on task switch uint16_t ts_iomb; // I/O map base address }; // Gate descriptors for interrupts and traps struct Gatedesc { unsigned gd_off_15_0 : 16; // low 16 bits of offset in segment unsigned gd_sel : 16; // segment selector unsigned gd_args : 5; // # args, 0 for interrupt/trap gates unsigned gd_rsv1 : 3; // reserved(should be zero I guess) unsigned gd_type : 4; // type(STS_{TG,IG32,TG32}) unsigned gd_s : 1; // must be 0 (system) unsigned gd_dpl : 2; // descriptor(meaning new) privilege level unsigned gd_p : 1; // Present unsigned gd_off_31_16 : 16; // high bits of offset in segment }; // Set up a normal interrupt/trap gate descriptor. // - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate. // see section 9.6.1.3 of the i386 reference: "The difference between // an interrupt gate and a trap gate is in the effect on IF (the // interrupt-enable flag). An interrupt that vectors through an // interrupt gate resets IF, thereby preventing other interrupts from // interfering with the current interrupt handler. A subsequent IRET // instruction restores IF to the value in the EFLAGS image on the // stack. An interrupt through a trap gate does not change IF." // - sel: Code segment selector for interrupt/trap handler // - off: Offset in code segment for interrupt/trap handler // - dpl: Descriptor Privilege Level - // the privilege level required for software to invoke // this interrupt/trap gate explicitly using an int instruction. #define SETGATE(gate, istrap, sel, off, dpl) \ { \ (gate).gd_off_15_0 = (uint32_t) (off) & 0xffff; \ (gate).gd_sel = (sel); \ (gate).gd_args = 0; \ (gate).gd_rsv1 = 0; \ (gate).gd_type = (istrap) ? STS_TG32 : STS_IG32; \ (gate).gd_s = 0; \ (gate).gd_dpl = (dpl); \ (gate).gd_p = 1; \ (gate).gd_off_31_16 = (uint32_t) (off) >> 16; \ } // Set up a call gate descriptor. #define SETCALLGATE(gate, sel, off, dpl) \ { \ (gate).gd_off_15_0 = (uint32_t) (off) & 0xffff; \ (gate).gd_sel = (sel); \ (gate).gd_args = 0; \ (gate).gd_rsv1 = 0; \ (gate).gd_type = STS_CG32; \ (gate).gd_s = 0; \ (gate).gd_dpl = (dpl); \ (gate).gd_p = 1; \ (gate).gd_off_31_16 = (uint32_t) (off) >> 16; \ } // Pseudo-descriptors used for LGDT, LLDT and LIDT instructions. struct Pseudodesc { uint16_t pd_lim; // Limit uint32_t pd_base; // Base address } __attribute__ ((packed)); #endif /* !__ASSEMBLER__ */ #endif /* !JOS_INC_MMU_H */