// The local APIC manages internal (non-I/O) interrupts. // See Chapter 8 & Appendix C of Intel processor manual volume 3. #include #include #include #include #include #include #include #include // Local APIC registers, divided by 4 for use as uint32_t[] indices. #define ID (0x0020/4) // ID #define VER (0x0030/4) // Version #define TPR (0x0080/4) // Task Priority #define EOI (0x00B0/4) // EOI #define SVR (0x00F0/4) // Spurious Interrupt Vector #define ENABLE 0x00000100 // Unit Enable #define ESR (0x0280/4) // Error Status #define ICRLO (0x0300/4) // Interrupt Command #define INIT 0x00000500 // INIT/RESET #define STARTUP 0x00000600 // Startup IPI #define DELIVS 0x00001000 // Delivery status #define ASSERT 0x00004000 // Assert interrupt (vs deassert) #define DEASSERT 0x00000000 #define LEVEL 0x00008000 // Level triggered #define BCAST 0x00080000 // Send to all APICs, including self. #define OTHERS 0x000C0000 // Send to all APICs, excluding self. #define BUSY 0x00001000 #define FIXED 0x00000000 #define ICRHI (0x0310/4) // Interrupt Command [63:32] #define TIMER (0x0320/4) // Local Vector Table 0 (TIMER) #define X1 0x0000000B // divide counts by 1 #define PERIODIC 0x00020000 // Periodic #define PCINT (0x0340/4) // Performance Counter LVT #define LINT0 (0x0350/4) // Local Vector Table 1 (LINT0) #define LINT1 (0x0360/4) // Local Vector Table 2 (LINT1) #define ERROR (0x0370/4) // Local Vector Table 3 (ERROR) #define MASKED 0x00010000 // Interrupt masked #define TICR (0x0380/4) // Timer Initial Count #define TCCR (0x0390/4) // Timer Current Count #define TDCR (0x03E0/4) // Timer Divide Configuration physaddr_t lapicaddr; // Initialized in mpconfig.c volatile uint32_t *lapic; static void lapicw(int index, int value) { lapic[index] = value; lapic[ID]; // wait for write to finish, by reading } void lapic_init(void) { if (!lapicaddr) return; // lapicaddr is the physical address of the LAPIC's 4K MMIO // region. Map it in to virtual memory so we can access it. lapic = mmio_map_region(lapicaddr, 4096); // Enable local APIC; set spurious interrupt vector. lapicw(SVR, ENABLE | (IRQ_OFFSET + IRQ_SPURIOUS)); // The timer repeatedly counts down at bus frequency // from lapic[TICR] and then issues an interrupt. // If we cared more about precise timekeeping, // TICR would be calibrated using an external time source. lapicw(TDCR, X1); lapicw(TIMER, PERIODIC | (IRQ_OFFSET + IRQ_TIMER)); lapicw(TICR, 10000000); // Leave LINT0 of the BSP enabled so that it can get // interrupts from the 8259A chip. // // According to Intel MP Specification, the BIOS should initialize // BSP's local APIC in Virtual Wire Mode, in which 8259A's // INTR is virtually connected to BSP's LINTIN0. In this mode, // we do not need to program the IOAPIC. if (thiscpu != bootcpu) lapicw(LINT0, MASKED); // Disable NMI (LINT1) on all CPUs lapicw(LINT1, MASKED); // Disable performance counter overflow interrupts // on machines that provide that interrupt entry. if (((lapic[VER]>>16) & 0xFF) >= 4) lapicw(PCINT, MASKED); // Map error interrupt to IRQ_ERROR. lapicw(ERROR, IRQ_OFFSET + IRQ_ERROR); // Clear error status register (requires back-to-back writes). lapicw(ESR, 0); lapicw(ESR, 0); // Ack any outstanding interrupts. lapicw(EOI, 0); // Send an Init Level De-Assert to synchronize arbitration ID's. lapicw(ICRHI, 0); lapicw(ICRLO, BCAST | INIT | LEVEL); while(lapic[ICRLO] & DELIVS) ; // Enable interrupts on the APIC (but not on the processor). lapicw(TPR, 0); } int cpunum(void) { if (lapic) return lapic[ID] >> 24; return 0; } // Acknowledge interrupt. void lapic_eoi(void) { if (lapic) lapicw(EOI, 0); } // Spin for a given number of microseconds. // On real hardware would want to tune this dynamically. static void microdelay(int us) { } #define IO_RTC 0x70 // Start additional processor running entry code at addr. // See Appendix B of MultiProcessor Specification. void lapic_startap(uint8_t apicid, uint32_t addr) { int i; uint16_t *wrv; // "The BSP must initialize CMOS shutdown code to 0AH // and the warm reset vector (DWORD based at 40:67) to point at // the AP startup code prior to the [universal startup algorithm]." outb(IO_RTC, 0xF); // offset 0xF is shutdown code outb(IO_RTC+1, 0x0A); wrv = (uint16_t *)KADDR((0x40 << 4 | 0x67)); // Warm reset vector wrv[0] = 0; wrv[1] = addr >> 4; // "Universal startup algorithm." // Send INIT (level-triggered) interrupt to reset other CPU. lapicw(ICRHI, apicid << 24); lapicw(ICRLO, INIT | LEVEL | ASSERT); microdelay(200); lapicw(ICRLO, INIT | LEVEL); microdelay(100); // should be 10ms, but too slow in Bochs! // Send startup IPI (twice!) to enter code. // Regular hardware is supposed to only accept a STARTUP // when it is in the halted state due to an INIT. So the second // should be ignored, but it is part of the official Intel algorithm. // Bochs complains about the second one. Too bad for Bochs. for (i = 0; i < 2; i++) { lapicw(ICRHI, apicid << 24); lapicw(ICRLO, STARTUP | (addr >> 12)); microdelay(200); } } void lapic_ipi(int vector) { lapicw(ICRLO, OTHERS | FIXED | vector); while (lapic[ICRLO] & DELIVS) ; }