
1

Fenceless Grazing Tech Review - Ryan
Alder

Danila Fedorin, Matthew Sessions, Ryan Alder

F

Abstract

One of the most important requirements before starting any large project is the separation of responsibilities between
team members. In an effort to limit scope creep and ensure that my responsibilities are obvious to the rest of my team I
have defined what I am accountable for in this project. My primary role is to write and implement software and the LoRa
connection between the end-nodes (collars) and the gateway. I will be responsible for writing the high level logic software
for each collar which will integrate with the drivers for the separate microcontrollers and modules. I will work with Danila
to develop the server software which will act as the logic API which interacts with the user in the form of the Android
application. Lastly, I will be responsible for implementing the LoRa protocol to connect each collar to the gateway(s). This
will include managing connections per second and ensuring scalability for different sizes of fields and number of livestock.

2

CONTENTS

1 Team Goal 3

2 Responsibilities 3
2.1 API Server . 3

2.1.1 Server Technology . 3
2.1.2 Server Operating System . 3
2.1.3 Software . 4

2.2 Long Distance Communication - LoRa / LoRaWAN . 4
2.2.1 LoRa . 4
2.2.2 Implementation / Scalability / Frequency . 4

2.3 Collar Logic . 5
2.3.1 Software . 5

3

1 TEAM GOAL

Currently in order to maintain fields and prevent overgrazing, farmers need to constantly move sheep and
cattle to different grazing areas. This requires either moving fence lines, or more likely having many different
fenced in areas. This is a long and tedious process, especially for the modern day farmer with the technology
currently available. This project will attempt to solve this issue by seriously decreasing the amount of time
farmers spend moving their flocks to new grazing areas.

The Fenceless Grazing Collar System is an application of the LoRa and LoRaWAN internet of things
technologies to animal farming. It will be implemented as a collar with which each individual farm animal
will be equipped. The fenceless grazing system must be capable of precisely tracking high numbers of farm
animals, controlling these animals using sound and electric shocks, and allowing end users (typically farmers)
to monitor the animals and adjust their desired location. This project will be implemented via collars on each
animal which communicates with a main server. Commands are sent to the server from an Android application,
and data from the server is clearly displayed on the app. Ease of use, accuracy, and availability are the most
important requirements for this project.

2 RESPONSIBILITIES

2.1 API Server
An API server is an absolutely necessary requirement for this project. LoRa - the communication protocol
between the end nodes and the gateway is a proprietary system and as a result cannot directly interact with
smartphones. Even if it could, limiting a farmer to only being able to change their fences while in proximity
to the LoRa gateway is unnecessary and would just serve to be a large burden. In an effort to simplify the
experience for the farmer, a Linux server will be running that will allow integration between the Android
application and each collar. The main responsibilities of this server will be gather commands from the user and
relay these commands to each end node. The server will need to be able to confirm the identity of the user,
gather commands, send data to the user to display on the application, send updates to each end node over the
LoRa protocol, gather and store data in a SQL database, and maintain a high level of availability. Our choices
for the technology, operating system, and software running on the server will need to meet the above criteria in
order to be deemed sufficient for this project. To reiterate, the criteria that needs to be met will include high level
of availability (at least three 9s or better https://searchnetworking.techtarget.com/feature/The-Holy-Grail-of-
five-nines-reliability), the ability to efficiently gather and store data, and communicate with the collars.

2.1.1 Server Technology
There are many options for the server itself including purchasing / building an actual server (Dell EMC Pow-
erEdge or similar), a normal home computer acting as a server, or a smaller computer (Raspberry Pi) that is price
efficient yet lacking in power and computational speed. For this project I recommend using a Raspberry Pi com-
puter as these machines are extremely powerful for the price. https://www.raspberrypi.org/documentation/faqs/#pi-
performance The server itself does not require extensive computation speed as communication will only be
between the Android application and the LoRa end nodes, and a Raspberry Pi provides plenty of speed and
memory for the SQL database while keeping costs down. Also, as this server will likely be installed in the
home of the user, a low profile will only help by keeping electricity costs down while staying out of sight for
the user. There is no reason to purchase anything more powerful than a Pi for this project due to the limited
computational requirements. In comparison to other options, the Pi is simply one of the most supported small
computers on the market. A Pi will provide reliability https://ieeexplore.ieee.org/document/7573242 and an
extremely easy interface, which will decrease the amount of time us as developers need to put into this project
to ensure reliability. Lastly, the Raspberry Pi already supports Linux and has its own distribution which also
decreases the amount of work required. The Pi is the most reliable option on the market while staying well
within budget in terms of cost and computational power.

2.1.2 Server Operating System
There are also many options for operating systems for the server including Windows Server and many flavors
of Linux distributions (CentOS, Raspbian, Arch, etc.). In order to only maintain one server instead of a
separate SQL server the main box will be running the Raspbian linux distribution. This distribution is ideal
for any of the Raspberry Pi computers as it was specifically built for the hardware. While other distributions
provide more support for large scale servers (CentOS), Raspbian is preferred for this specific application as
it provides reliability while maintaining project requirements. The only two things that need to be running

4

on this server is the SQL database and the Python application which is automatically supported by Rasp-
bian. https://raspberrytips.com/best-os-for-raspberry-pi/ https://www.techradar.com/news/best-raspberry-
pi-distro

2.1.3 Software
The Raspberry Pi will be running an instance of Python that will host the HTTP server. Python was chosen
over other languages such as NodeJS and Java for it’s ease of use, our familiarity with the language, and
the inherent support provided by Raspbian. Python, despite not being common in large scale HTTP server
implementations, will be perfectly fine for our applications as the frequency of HTTP requests will be limited
to just the one instance of the Android application. Using Python will speed up development time which will
decrease costs and allow the developers to focus efforts on other parts of the project in order to ensure that
everything is accomplished in time. Gunicorn will be the web server due to its compatibility with Python.
https://docs.gunicorn.org/en/stable/ Gunicorn’s support for Python is the primary reason why it is being
chosen over nginx or Apache and will again provide reliability to the server.

https://www.digitalocean.com/community/tutorials/a-comparison-of-web-servers-for-python-based-web-
applications

2.2 Long Distance Communication - LoRa / LoRaWAN
Arguably the most important part for this project is ensuring that all collars can effectively communicate with
the server over vast distances while allowing scalability. Each animal may be several kilometers away from the
farm house, and our project needs to be able to support large farms with many different fields. As a result, the
most important part of the communication protocol is distance, closely followed by required power. Each collar
needs to be able to communicate with the gateway across vast distances, and maintain a reasonable battery life
as requiring a change in batteries each week would be too great an annoyance, and would directly take away
from our end goal. In order to be able to allow long distance communication while keeping battery usage low,
the LoRa protocol was chosen. LoRa is the proprietary communication protocol found on the physical layer
of the network stack, and stands for Long Range. LoRa was initially developed for Internet of Things (IoT)
applications, which supports what we are trying to accomplish in this project.

2.2.1 LoRa
There are many options in terms of long distance communication. Of course, one could theoretically route
wires across long distances. This, of course, will not be feasible in any way for this particular project. Com-
munication between the collars has to be wireless. With that in mind, a couple of options were determined to
be possible. One way of communication over vast distances is connecting each collar to an already existing
cellular network using 4G or 5G by using Narrowband IoT (NB-IoT). Another option is to use Sigfox, one of the
original setups for IOT devices. Sigfox would require connecting to their proprietary cellular tower, somewhat
similar to NB-IoT. Our last, and best option is LoRa (Long Range). LoRa uses radio waves and a proprietary
communication style called Chirp Spread Spectrum (CSS) to communicate long distances in short, small bursts.
https://www.semtech.com/lora/what-is-lora All three of these options provide opportunities to transmit data
long distances with limited bandwidth. As each collar only needs to transmit their current position and status,
bandwidth is not a problem at all, and the less bandwidth the better as less electricity would be required to
power the device. Sigfox was disregarded as the company itself seems to be failing, and is lacking in coverage
across the country. Also, it does not give us the flexibility to implement the network ourselves and control
our own communication. NB-IoT also prevents us from managing our own network, doesn’t work well with
roaming assets, and is expensive in terms of cost. LoRa, on the other hand, allows us to manage our own
network, supports bidirectionality, works extremely well while the end-nodes are in motion (just like cattle will
be), and have a longer battery life on average than the other two options https://www.link-labs.com/blog/nb-
iot-vs-lora-vs-sigfox . The battery life is the most important part, as the idea is to limit the required interaction
between the farmer and the livestock. While LoRa does not support high data rates like NB-IoT, this is a non-
issue for us as the amount of data we will need to transmit each day is miniscule. After researching options
with our requirements in mind, LoRa is clearly the best option for this project.

2.2.2 Implementation / Scalability / Frequency
Semtech owns the LoRa protocol, and as a result proprietary hardware will need to be purchased for every
collar in the gateway. Each collar will host a LoRa transmitter/receiver which will be used to communicate both

5

with the gateway and the server. Setting up the communication between these devices, ensuring scalability, and
providing a reliable service are my responsibilities for this project. Hardware will need to be sourced, integrated,
and tested onto the collars. The number of gateways will need to be determined on a case-by-case basis for
each farm. A study will need to be conducted into the optimal way to setup a LoRa network, with distance
and battery life taken into consideration. Once the number of communications per day are determined, the
distance required, and the battery life needed the number of gateways can be determined. Sourcing the right
LoRa receivers and transmitters is not my responsibility, and will be covered by Matthew.

2.3 Collar Logic
As a result of using the LoRa protocol, and due to the large number of end nodes planned for each network,
the number of times the collars communicate with the server will need to be minimized. As a result, the server
cannot inform the collars when to do an action (play a noise when the animal is getting close to the fence,
electrical stimulus afterwards, etc.), and instead can only tell the collars when the location of the fence updates.
Each individual collar will need to provide its own logic based on the location of the animal from GPS and
the most recent information about the fenceline. A program will need to be running on these collar constantly
monitoring the location of the animal and providing the logic for communicating with the server. This program
needs to be efficient, reliable, and fast as the actual computational power of the collars will be limited. The
response of the program to the data being provided needs to be smooth in order to not confuse the cattle when
approaching a fenceline. With these requirements in mind, the following language was determined to be the
best choice.

2.3.1 Software
The ideal language for this application is C. The main reason for this is my extensive familiarity with the
language (decreases programming time while keeping a high level of accuracy), alongside the fact that C
is a compiled language. Running Python on the collars would require unnecessary RAM that may not be
available depending on the actual hardware of the system. C is the language of choice for embedded systems
https://www.allaboutcircuits.com/news/programming-languages-for-embedded-systems-101-background-and-
resources/, and will easily be able to integrate with the drivers that Matthew is writing for the individual
components. The program will be written alongside the work down by Matthew, and will provide all necessary
logic on the collars. Alongside communicating with microcontrollers and modules, the program will provide
logic that will track battery usage and turn things on and off as needed. The GPS module can be limited to
gathering information once every couple of seconds to decrease battery time, as well as limiting the number of
connections to the LoRa gateway. The code will be compiled and installed on each collar for deployment.

