#include #include #include #include // LoRaWAN NwkSKey, network session key static const PROGMEM u1_t NWKSKEY[16] = { 0x52, 0x92, 0xC0, 0x72, 0x2D, 0x3C, 0x55, 0x5E, 0xE4, 0xB9, 0x9E, 0x9B, 0x88, 0x66, 0x47, 0xF1 }; // LoRaWAN AppSKey, application session key static const u1_t PROGMEM APPSKEY[16] = { 0xC4, 0x30, 0xEF, 0x56, 0x4F, 0x6D, 0xA2, 0x56, 0x1F, 0x15, 0x2F, 0xB8, 0x62, 0xC7, 0xCA, 0xC2 }; void os_getArtEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { } void os_getDevKey (u1_t* buf) { } static osjob_t sendjob; // Chirpstack keys // static const u1_t PROGMEM NWKSKEY[16] = {0x5b,0xe6,0x8b,0xb7,0xaa,0x4f,0x01,0x85,0x54,0x72,0xd9,0x6f,0xd8,0xba,0xbc,0x99}; // static const u1_t PROGMEM APPSKEY[16] = {0xee,0x9a,0x94,0x96,0x9d,0x59,0xfb,0xc2,0x7a,0xe6,0x07,0xe1,0x6e,0x04,0x37,0x5b}; // static const u4_t DEVADDR = 0x005d96f5; static const u4_t DEVADDR = 0x260212B6; // void printf(char *str) { // Serial.println(str); // } void debug_function(char *str) { Serial.println(str); } // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 5; // Pin mapping for Adafruit Feather M0 LoRa const lmic_pinmap lmic_pins = { .nss = 10, .rxtx = LMIC_UNUSED_PIN, .rst = 9, .dio = {2, 3, LMIC_UNUSED_PIN}, }; /**************************************************** * Arduino drivers * - LoRaWAN * - GPS ***************************************************/ TinyGPSPlus gps; uint8_t general_int; volatile uint8_t n_poly; #define isr general_int #define timeout general_int /**************************************************** * Track each pair of X and Y coordinates * - arrays are used by the pnpoly function ***************************************************/ const uint8_t N_POLY_MAX=10; float polyx[N_POLY_MAX*2+5]; float * const polyy = polyx + N_POLY_MAX; /**************************************************** * Check a pair of coordinates against two lists * of vertices * - https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html ***************************************************/ const int pnpoly (const uint8_t nvert, const float *vertx, const float *verty, const float testx, const float testy) { uint8_t i, j, c = 0; for (i = 0, j = nvert-1; i < nvert; j = i++) { if ( ((verty[i]>testy) != (verty[j]>testy)) && (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) ) c = !c; } return c; } /**************************************************** * Test a coordinate against all vertices * - takes current GPS coordinates * - return 1 if in bounds ***************************************************/ const int check_bounds(const float x, const float y) { return pnpoly(n_poly, polyx, polyy, x, y); } /**************************************************** * Load coordinates from protobuff stream * - currently a maximum of 10 coordinates * - loading arrays in nanopb does not appear * to work. ***************************************************/ static volatile uint8_t data_available = 0; static volatile uint8_t done_sending = 0; inline void import_protobuf(const uint8_t *protobuffer, const uint8_t size) { if(size != 122) { Serial.println("nmd"); return; } isr = protobuffer[1]; if(isr>N_POLY_MAX) isr = 0; const uint8_t *ptr = protobuffer + 5; for(uint8_t i=0;i 0) { gps.encode(softserial_read()); available--; } } inline void on_start_gps() { Serial.println("Starting gps"); state = WAIT_GPS; } inline void on_wait_gps() { Serial.println("Waiting for gps"); if(gps.location.isValid()) { state = START_LORA; Serial.println("end of gps"); } } #define TYPE_STRING 0x0A #define TYPE_VARIANT 0x10 #define PROTO_LEN 0x0A #define FIELD_ONE_FLOAT 0x0D #define FIELD_TWO_FLOAT 0x15 #define FIELD_TWO_VARIANT 0x10 const char oob[] = "OUT OF BOUNDS"; const char inb[] = "IN BOUNDS"; uint8_t buffer[] = { TYPE_STRING, PROTO_LEN, FIELD_ONE_FLOAT, 0x00, 0x00, 0x48, 0x43, FIELD_TWO_FLOAT, 0x00, 0x00, 0xc8, 0x42, FIELD_TWO_VARIANT, 0, 0}; void on_start_lora() { // Serial.println("Starting lora"); } void send_lora() { if (LMIC.opmode & OP_TXRXPEND) { Serial.print(" -cns"); done_sending = 1; } else { const float latitude = gps.location.lat(); const float longitude = gps.location.lng(); if(n_poly>0) { const uint8_t out_of_bounds = 0;//!check_bounds(latitude, longitude); if(out_of_bounds) { Serial.println(oob); } else { Serial.println(inb); } // digitalWrite(LED_BUILTIN, out_of_bounds); buffer[13] = out_of_bounds; } else { const uint8_t out_of_bounds = 0; buffer[13] = out_of_bounds; } memcpy(buffer+3, (void*)&latitude, 4); memcpy(buffer+8, (void*)&longitude, 4); LMIC_setTxData2(1, buffer, sizeof(buffer)-1, 0); } since = millis(); state = WAIT_LORA; } void do_send(osjob_t* j){ send_lora(); } void on_wait_lora() { if(millis()- since > TX_INTERVAL*1000UL || done_sending) { Serial.println(" -Lora Done Sending"); done_sending = 0; state = START_GPS; } } #define LOOP_LATENCY_MS 200L uint32_t time_last = 0; void loop() { uint32_t time = millis(); if((time - time_last) > LOOP_LATENCY_MS) { time_last = time; Serial.print(state); Serial.print('.'); if(state == START_GPS) { // softserial_init(); on_start_gps(); } else if(state == WAIT_GPS) { on_wait_gps(); } else if(state == START_LORA) { // softserial_end(); on_start_lora(); } else if(state == WAIT_LORA) { on_wait_lora(); } } else { // Serial.print('.'); } if(data_available) { Serial.println("Data available"); for(uint8_t i=0;i