package org.nwapw.abacus.plugin; import org.nwapw.abacus.function.Function; import org.nwapw.abacus.function.Operator; import org.nwapw.abacus.function.OperatorAssociativity; import org.nwapw.abacus.function.OperatorType; import org.nwapw.abacus.number.NaiveNumber; import org.nwapw.abacus.number.NumberInterface; import org.nwapw.abacus.number.PreciseNumber; import java.util.function.BiFunction; /** * The plugin providing standard functions such as addition and subtraction to * the calculator. */ public class StandardPlugin extends Plugin { public static final Operator OP_ADD = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface sum = params[0]; for (int i = 1; i < params.length; i++) { sum = sum.add(params[i]); } return sum; } }); public static final Operator OP_SUBTRACT = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].subtract(params[1]); } }); public static final Operator OP_MULTIPLY = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface product = params[0]; for (int i = 1; i < params.length; i++) { product = product.multiply(params[i]); } return product; } }); public static final Operator OP_DIVIDE = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface product = params[0]; for (int i = 1; i < params.length; i++) { product = product.multiply(params[i]); } return product; } }); public static final Operator OP_FACTORIAL = new Operator(OperatorAssociativity.RIGHT, OperatorType.UNARY_POSTFIX, 0, new Function() { //private HashMap, ArrayList> storedList = new HashMap, ArrayList>(); @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { if (params[0].signum() == 0) { return (new NaiveNumber(1)).promoteTo(params[0].getClass()); } NumberInterface factorial = params[0]; NumberInterface multiplier = params[0]; //It is necessary to later prevent calls of factorial on anything but non-negative integers. while ((multiplier = multiplier.subtract(NaiveNumber.ONE.promoteTo(multiplier.getClass()))).signum() == 1) { factorial = factorial.multiply(multiplier); } return factorial; /*if(!storedList.containsKey(params[0].getClass())){ storedList.put(params[0].getClass(), new ArrayList()); storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass())); storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass())); }*/ } }); public static final Function FUNCTION_ABS = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].multiply((new NaiveNumber(params[0].signum())).promoteTo(params[0].getClass())); } }; public static final Function FUNCTION_EXP = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { boolean takeReciprocal = params[0].signum() == -1; params[0] = FUNCTION_ABS.apply(params[0]); NumberInterface sum = sumSeries(params[0], StandardPlugin::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0])); if (takeReciprocal) { sum = NaiveNumber.ONE.promoteTo(sum.getClass()).divide(sum); } return sum; } }; public static final Function FUNCTION_LN = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface param = params[0]; int powersOf2 = 0; while (FUNCTION_ABS.apply(param.subtract(NaiveNumber.ONE.promoteTo(param.getClass()))).compareTo((new NaiveNumber(0.1)).promoteTo(param.getClass())) >= 0) { if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() == 1) { param = param.divide(new NaiveNumber(2).promoteTo(param.getClass())); powersOf2++; if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != 1) { break; //No infinite loop for you. } } else { param = param.multiply(new NaiveNumber(2).promoteTo(param.getClass())); powersOf2--; if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != 1) { break; //No infinite loop for you. } } } return getLog2(param).multiply((new NaiveNumber(powersOf2)).promoteTo(param.getClass())).add(getLogPartialSum(param)); } /** * Returns the partial sum of the Taylor series for logx (around x=1). * Automatically determines the number of terms needed based on the precision of x. * @param x value at which the series is evaluated. 0 < x < 2. (x=2 is convergent but impractical.) * @return the partial sum. */ private NumberInterface getLogPartialSum(NumberInterface x) { NumberInterface maxError = getMaxError(x); x = x.subtract(NaiveNumber.ONE.promoteTo(x.getClass())); //Terms used are for log(x+1). NumberInterface currentTerm = x, sum = x; int n = 1; while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0) { n++; currentTerm = currentTerm.multiply(x).multiply((new NaiveNumber(n - 1)).promoteTo(x.getClass())).divide((new NaiveNumber(n)).promoteTo(x.getClass())).negate(); sum = sum.add(currentTerm); } return sum; } /** * Returns natural log of 2 to the required precision of the class of number. * @param number a number of the same type as the return type. (Used for precision.) * @return the value of log(2) with the appropriate precision. */ private NumberInterface getLog2(NumberInterface number) { NumberInterface maxError = getMaxError(number); //NumberInterface errorBound = (new NaiveNumber(1)).promoteTo(number.getClass()); //We'll use the series \sigma_{n >= 1) ((1/3^n + 1/4^n) * 1/n) //In the following, a=1/3^n, b=1/4^n, c = 1/n. //a is also an error bound. NumberInterface a = (new NaiveNumber(1)).promoteTo(number.getClass()), b = a, c = a; NumberInterface sum = NaiveNumber.ZERO.promoteTo(number.getClass()); int n = 0; while (a.compareTo(maxError) >= 1) { n++; a = a.divide((new NaiveNumber(3)).promoteTo(number.getClass())); b = b.divide((new NaiveNumber(4)).promoteTo(number.getClass())); c = NaiveNumber.ONE.promoteTo(number.getClass()).divide((new NaiveNumber(n)).promoteTo(number.getClass())); sum = sum.add(a.add(b).multiply(c)); } return sum; } }; public static final Operator OP_CARET = new Operator(OperatorAssociativity.RIGHT, OperatorType.BINARY_INFIX, 2, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return FUNCTION_EXP.apply(FUNCTION_LN.apply(params[0]).multiply(params[1])); } }); public static final Function FUNCTION_SQRT = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return OP_CARET.getFunction().apply(params[0], ((new NaiveNumber(0.5)).promoteTo(params[0].getClass()))); } }; public StandardPlugin(PluginManager manager) { super(manager); } /** * Returns the nth term of the Taylor series (centered at 0) of e^x * * @param n the term required (n >= 0). * @param x the real number at which the series is evaluated. * @return the nth term of the series. */ private static NumberInterface getExpSeriesTerm(int n, NumberInterface x) { return x.intPow(n).divide(OP_FACTORIAL.getFunction().apply((new NaiveNumber(n)).promoteTo(x.getClass()))); } /** * Returns the number of terms needed to evaluate the exponential function (at x) * such that the error is at most maxError. * * @param maxError Maximum error permissible (This should probably be positive.) * @param x where the function is evaluated. * @return the number of terms needed to evaluated the exponential function. */ private static int getNTermsExp(NumberInterface maxError, NumberInterface x) { //We need n such that |x^(n+1)| <= (n+1)! * maxError //The variables LHS and RHS refer to the above inequality. int n = 0; x = FUNCTION_ABS.apply(x); NumberInterface LHS = x, RHS = maxError; while (LHS.compareTo(RHS) > 0) { n++; LHS = LHS.multiply(x); RHS = RHS.multiply(new NaiveNumber(n + 1).promoteTo(RHS.getClass())); } return n; } /** * Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x. * * @param x the value at which the series is evaluated. * @param nthTermFunction the function that returns the nth term of the series, in the format term(x, n). * @param n the number of terms in the partial sum. * @return the value of the partial sum that has the same class as x. */ private static NumberInterface sumSeries(NumberInterface x, BiFunction nthTermFunction, int n) { NumberInterface sum = NaiveNumber.ZERO.promoteTo(x.getClass()); for (int i = 0; i <= n; i++) { sum = sum.add(nthTermFunction.apply(i, x)); } return sum; } /** * Returns the maximum error based on the precision of the class of number. * * @param number Any instance of the NumberInterface in question (should return an appropriate precision). * @return the maximum error. */ private static NumberInterface getMaxError(NumberInterface number) { return (new NaiveNumber(10)).promoteTo(number.getClass()).intPow(-number.getMaxPrecision()); } @Override public void onEnable() { registerNumber("naive", NaiveNumber.class); registerNumber("precise", PreciseNumber.class); registerOperator("+", OP_ADD); registerOperator("-", OP_SUBTRACT); registerOperator("*", OP_MULTIPLY); registerOperator("/", OP_DIVIDE); registerOperator("^", OP_CARET); registerOperator("!", OP_FACTORIAL); registerFunction("abs", FUNCTION_ABS); registerFunction("exp", FUNCTION_EXP); registerFunction("ln", FUNCTION_LN); registerFunction("sqrt", FUNCTION_SQRT); } @Override public void onDisable() { } }