package org.nwapw.abacus.plugin; import org.nwapw.abacus.function.Function; import org.nwapw.abacus.function.Operator; import org.nwapw.abacus.function.OperatorAssociativity; import org.nwapw.abacus.function.OperatorType; import org.nwapw.abacus.number.NaiveNumber; import org.nwapw.abacus.number.NumberInterface; import org.nwapw.abacus.number.PreciseNumber; import java.util.ArrayList; import java.util.HashMap; import java.util.function.BiFunction; /** * The plugin providing standard functions such as addition and subtraction to * the calculator. */ public class StandardPlugin extends Plugin { /** * Stores objects of NumberInterface with integer values for reuse. */ private final static HashMap, HashMap> integerValues = new HashMap<>(); /** * The addition operator, + */ public static final Operator OP_ADD = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface sum = params[0]; for (int i = 1; i < params.length; i++) { sum = sum.add(params[i]); } return sum; } }); /** * The subtraction operator, - */ public static final Operator OP_SUBTRACT = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].subtract(params[1]); } }); /** * The negation operator, - */ public static final Operator OP_NEGATE = new Operator(OperatorAssociativity.LEFT, OperatorType.UNARY_PREFIX, 0, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].negate(); } }); /** * The multiplication operator, * */ public static final Operator OP_MULTIPLY = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface product = params[0]; for (int i = 1; i < params.length; i++) { product = product.multiply(params[i]); } return product; } }); /** * The division operator, / */ public static final Operator OP_DIVIDE = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2 && params[1].compareTo(NaiveNumber.ZERO.promoteTo(params[1].getClass())) != 0; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].divide(params[1]); } }); /** * The factorial operator, ! */ public static final Operator OP_FACTORIAL = new Operator(OperatorAssociativity.RIGHT, OperatorType.UNARY_POSTFIX, 0, new Function() { //private HashMap, ArrayList> storedList = new HashMap, ArrayList>(); @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1 && params[0].fractionalPart().compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) == 0 && params[0].signum() >= 0; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { if (params[0].signum() == 0) { return fromInt(params[0].getClass(), 1); } NumberInterface factorial = params[0]; NumberInterface multiplier = params[0]; //It is necessary to later prevent calls of factorial on anything but non-negative integers. while ((multiplier = multiplier.subtract(NaiveNumber.ONE.promoteTo(multiplier.getClass()))).signum() == 1) { factorial = factorial.multiply(multiplier); } return factorial; /*if(!storedList.containsKey(params[0].getClass())){ storedList.put(params[0].getClass(), new ArrayList()); storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass())); storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass())); }*/ } }); /** * The absolute value function, abs(-3) = 3 */ public static final Function FUNCTION_ABS = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].multiply((new NaiveNumber(params[0].signum())).promoteTo(params[0].getClass())); } }; /** * The natural log function. */ public static final Function FUNCTION_LN = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1 && params[0].compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) > 0; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface param = params[0]; int powersOf2 = 0; while (FUNCTION_ABS.apply(param.subtract(NaiveNumber.ONE.promoteTo(param.getClass()))).compareTo(new NaiveNumber(0.1).promoteTo(param.getClass())) >= 0) { if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() == 1) { param = param.divide(fromInt(param.getClass(), 2)); powersOf2++; if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != 1) { break; //No infinite loop for you. } } else { param = param.multiply(fromInt(param.getClass(), 2)); powersOf2--; if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != -1) { break; //No infinite loop for you. } } } return getLog2(param).multiply((new NaiveNumber(powersOf2)).promoteTo(param.getClass())).add(getLogPartialSum(param)); } /** * Returns the partial sum of the Taylor series for logx (around x=1). * Automatically determines the number of terms needed based on the precision of x. * @param x value at which the series is evaluated. 0 < x < 2. (x=2 is convergent but impractical.) * @return the partial sum. */ private NumberInterface getLogPartialSum(NumberInterface x) { NumberInterface maxError = x.getMaxError(); x = x.subtract(NaiveNumber.ONE.promoteTo(x.getClass())); //Terms used are for log(x+1). NumberInterface currentNumerator = x, currentTerm = x, sum = x; int n = 1; while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0) { n++; currentNumerator = currentNumerator.multiply(x).negate(); currentTerm = currentNumerator.divide(new NaiveNumber(n).promoteTo(x.getClass())); sum = sum.add(currentTerm); } return sum; } /** * Returns natural log of 2 to the required precision of the class of number. * @param number a number of the same type as the return type. (Used for precision.) * @return the value of log(2) with the appropriate precision. */ private NumberInterface getLog2(NumberInterface number) { NumberInterface maxError = number.getMaxError(); //NumberInterface errorBound = fromInt(number.getClass(), 1); //We'll use the series \sigma_{n >= 1) ((1/3^n + 1/4^n) * 1/n) //In the following, a=1/3^n, b=1/4^n, c = 1/n. //a is also an error bound. NumberInterface a = fromInt(number.getClass(), 1), b = a, c = a; NumberInterface sum = NaiveNumber.ZERO.promoteTo(number.getClass()); int n = 0; while (a.compareTo(maxError) >= 1) { n++; a = a.divide(fromInt(number.getClass(), 3)); b = b.divide(fromInt(number.getClass(), 4)); c = NaiveNumber.ONE.promoteTo(number.getClass()).divide((new NaiveNumber(n)).promoteTo(number.getClass())); sum = sum.add(a.add(b).multiply(c)); } return sum; } }; /** * The square root function. */ public static final Function FUNCTION_SQRT = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return OP_CARET.getFunction().apply(params[0], ((new NaiveNumber(0.5)).promoteTo(params[0].getClass()))); } }; /** * The implementation for double-based naive numbers. */ public static final NumberImplementation IMPLEMENTATION_NAIVE = new NumberImplementation(NaiveNumber.class, 0) { @Override public NumberInterface instanceForString(String string) { return new NaiveNumber(string); } @Override public NumberInterface instanceForPi() { return new NaiveNumber(Math.PI); } }; /** * The implementation for the infinite-precision BigDecimal. */ public static final NumberImplementation IMPLEMENTATION_PRECISE = new NumberImplementation(PreciseNumber.class, 0) { @Override public NumberInterface instanceForString(String string) { return new PreciseNumber(string); } @Override public NumberInterface instanceForPi() { NumberInterface C = FUNCTION_SQRT.apply(new PreciseNumber("10005")).multiply(new PreciseNumber("426880")); NumberInterface M = PreciseNumber.ONE; NumberInterface L = new PreciseNumber("13591409"); NumberInterface X = M; NumberInterface sum = L; int termsNeeded = C.getMaxPrecision() / 13 + 1; NumberInterface lSummand = new PreciseNumber("545140134"); NumberInterface xMultiplier = new PreciseNumber("262537412") .multiply(new PreciseNumber("1000000000")) .add(new PreciseNumber("640768000")) .negate(); for (int i = 0; i < termsNeeded; i++) { M = M .multiply(new NaiveNumber(12 * i + 2).promoteTo(PreciseNumber.class)) .multiply(new NaiveNumber(12 * i + 6).promoteTo(PreciseNumber.class)) .multiply(new NaiveNumber(12 * i + 10).promoteTo(PreciseNumber.class)) .divide(new NaiveNumber(Math.pow(i + 1, 3)).promoteTo(PreciseNumber.class)); L = L.add(lSummand); X = X.multiply(xMultiplier); sum = sum.add(M.multiply(L).divide(X)); } return C.divide(sum); } }; private static final HashMap, ArrayList> FACTORIAL_LISTS = new HashMap<>(); /** * The exponential function, exp(1) = e^1 = 2.71... */ public static final Function FUNCTION_EXP = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface maxError = params[0].getMaxError(); int n = 0; if (params[0].signum() <= 0) { NumberInterface currentTerm = NaiveNumber.ONE.promoteTo(params[0].getClass()), sum = currentTerm; while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0) { n++; currentTerm = currentTerm.multiply(params[0]).divide((new NaiveNumber(n)).promoteTo(params[0].getClass())); sum = sum.add(currentTerm); } return sum; } else { //We need n such that x^(n+1) * 3^ceil(x) <= maxError * (n+1)!. //right and left refer to lhs and rhs in the above inequality. NumberInterface sum = NaiveNumber.ONE.promoteTo(params[0].getClass()); NumberInterface nextNumerator = params[0]; NumberInterface left = params[0].multiply(fromInt(params[0].getClass(), 3).intPow(params[0].ceiling().intValue())), right = maxError; do { sum = sum.add(nextNumerator.divide(factorial(params[0].getClass(), n + 1))); n++; nextNumerator = nextNumerator.multiply(params[0]); left = left.multiply(params[0]); NumberInterface nextN = (new NaiveNumber(n + 1)).promoteTo(params[0].getClass()); right = right.multiply(nextN); //System.out.println(left + ", " + right); } while (left.compareTo(right) > 0); //System.out.println(n+1); return sum; } } }; /** * The caret / pow operator, ^ */ public static final Operator OP_CARET = new Operator(OperatorAssociativity.RIGHT, OperatorType.BINARY_INFIX, 2, new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2 && !(params[0].compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) == 0 && params[1].compareTo(NaiveNumber.ZERO.promoteTo(params[1].getClass())) == 0) && !(params[0].signum() == -1 && params[1].fractionalPart().compareTo(NaiveNumber.ZERO.promoteTo(params[1].getClass())) != 0); } @Override protected NumberInterface applyInternal(NumberInterface[] params) { if (params[0].compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) == 0) return NaiveNumber.ZERO.promoteTo(params[0].getClass()); else if (params[1].compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) == 0) return NaiveNumber.ONE.promoteTo(params[1].getClass()); //Detect integer bases: if(params[0].fractionalPart().compareTo(fromInt(params[0].getClass(), 0)) == 0 && FUNCTION_ABS.apply(params[1]).compareTo(fromInt(params[0].getClass(), Integer.MAX_VALUE)) < 0 && FUNCTION_ABS.apply(params[1]).compareTo(fromInt(params[1].getClass(), 1)) >= 0){ NumberInterface[] newParams = {params[0], params[1].fractionalPart()}; return params[0].intPow(params[1].floor().intValue()).multiply(applyInternal(newParams)); } return FUNCTION_EXP.apply(FUNCTION_LN.apply(FUNCTION_ABS.apply(params[0])).multiply(params[1])); } }); /** * The sine function (the argument is interpreted in radians). */ public final Function functionSin = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface pi = piFor(params[0].getClass()); NumberInterface twoPi = pi.multiply(fromInt(pi.getClass(), 2)); NumberInterface theta = getSmallAngle(params[0], pi); //System.out.println(theta); if (theta.compareTo(pi.multiply(new NaiveNumber(1.5).promoteTo(twoPi.getClass()))) >= 0) { theta = theta.subtract(twoPi); } else if (theta.compareTo(pi.divide(fromInt(pi.getClass(), 2))) > 0) { theta = pi.subtract(theta); } //System.out.println(theta); return sinTaylor(theta); } }; /** * The cosine function (the argument is in radians). */ public final Function functionCos = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return functionSin.apply(piFor(params[0].getClass()).divide(fromInt(params[0].getClass(), 2)) .subtract(params[0])); } }; /** * The tangent function (the argument is in radians). */ public final Function functionTan = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return functionSin.apply(params[0]).divide(functionCos.apply(params[0])); } }; /** * The secant function (the argument is in radians). */ public final Function functionSec = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionCos.apply(params[0])); } }; /** * The cosecant function (the argument is in radians). */ public final Function functionCsc = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionSin.apply(params[0])); } }; /** * The cotangent function (the argument is in radians). */ public final Function functionCot = new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return functionCos.apply(params[0]).divide(functionSin.apply(params[0])); } }; public StandardPlugin(PluginManager manager) { super(manager); } /** * Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x. * * @param x the value at which the series is evaluated. * @param nthTermFunction the function that returns the nth term of the series, in the format term(x, n). * @param n the number of terms in the partial sum. * @return the value of the partial sum that has the same class as x. */ private static NumberInterface sumSeries(NumberInterface x, BiFunction nthTermFunction, int n) { NumberInterface sum = NaiveNumber.ZERO.promoteTo(x.getClass()); for (int i = 0; i <= n; i++) { sum = sum.add(nthTermFunction.apply(i, x)); } return sum; } /** * A factorial function that uses memoization for each number class; it efficiently * computes factorials of non-negative integers. * * @param numberClass type of number to return. * @param n non-negative integer. * @return a number of numClass with value n factorial. */ public static NumberInterface factorial(Class numberClass, int n) { if (!FACTORIAL_LISTS.containsKey(numberClass)) { FACTORIAL_LISTS.put(numberClass, new ArrayList<>()); FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass)); FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass)); } ArrayList list = FACTORIAL_LISTS.get(numberClass); if (n >= list.size()) { while (list.size() < n + 16) { list.add(list.get(list.size() - 1).multiply(new NaiveNumber(list.size()).promoteTo(numberClass))); } } return list.get(n); } /** * Returns the value of the Taylor series for sin (centered at 0) at x. * * @param x where the series is evaluated. * @return the value of the series */ private static NumberInterface sinTaylor(NumberInterface x) { NumberInterface power = x, multiplier = x.multiply(x).negate(), currentTerm = x, sum = x; NumberInterface maxError = x.getMaxError(); int n = 1; do { n += 2; power = power.multiply(multiplier); currentTerm = power.divide(factorial(x.getClass(), n)); sum = sum.add(currentTerm); } while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0); return sum; } /** * Returns an equivalent angle in the interval [0, 2pi) * * @param phi an angle (in radians). * @return theta in [0, 2pi) that differs from phi by a multiple of 2pi. */ private static NumberInterface getSmallAngle(NumberInterface phi, NumberInterface pi) { NumberInterface twoPi = pi.multiply(new NaiveNumber("2").promoteTo(phi.getClass())); NumberInterface theta = FUNCTION_ABS.apply(phi).subtract(twoPi .multiply(FUNCTION_ABS.apply(phi).divide(twoPi).floor())); //Now theta is in [0, 2pi). if (phi.signum() < 0) { theta = twoPi.subtract(theta); } return theta; } /** * Returns a number of class numType with value n. * @param numType class of number to return. * @param n value of returned number. * @return numClass instance with value n. */ private static NumberInterface fromInt(Class numType, int n){ if(!integerValues.containsKey(numType)){ integerValues.put(numType, new HashMap<>()); } if(!integerValues.get(numType).containsKey(n)){ integerValues.get(numType).put(n, new NaiveNumber(n).promoteTo(numType)); } return integerValues.get(numType).get(n); } @Override public void onEnable() { registerNumberImplementation("naive", IMPLEMENTATION_NAIVE); registerNumberImplementation("precise", IMPLEMENTATION_PRECISE); registerOperator("+", OP_ADD); registerOperator("-", OP_SUBTRACT); registerOperator("`", OP_NEGATE); registerOperator("*", OP_MULTIPLY); registerOperator("/", OP_DIVIDE); registerOperator("^", OP_CARET); registerOperator("!", OP_FACTORIAL); registerFunction("abs", FUNCTION_ABS); registerFunction("exp", FUNCTION_EXP); registerFunction("ln", FUNCTION_LN); registerFunction("sqrt", FUNCTION_SQRT); registerFunction("sin", functionSin); registerFunction("cos", functionCos); registerFunction("tan", functionTan); registerFunction("sec", functionSec); registerFunction("csc", functionCsc); registerFunction("cot", functionCot); } @Override public void onDisable() { } }