package org.nwapw.abacus.plugin; import org.nwapw.abacus.function.Function; import org.nwapw.abacus.number.NaiveNumber; import org.nwapw.abacus.number.NumberInterface; import java.util.function.BiFunction; /** * The plugin providing standard functions such as addition and subtraction to * the calculator. */ public class StandardPlugin extends Plugin { public StandardPlugin(PluginManager manager) { super(manager); } @Override public void onEnable() { registerFunction("+", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface sum = params[0]; for(int i = 1; i < params.length; i++){ sum = sum.add(params[i]); } return sum; } }); registerFunction("-", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].subtract(params[1]); } }); registerFunction("*", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length >= 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { NumberInterface product = params[0]; for(int i = 1; i < params.length; i++){ product = product.multiply(params[i]); } return product; } }); registerFunction("/", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 2; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return params[0].divide(params[1]); } }); registerFunction("!", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { if(params[0].signum() == 0){ return (new NaiveNumber(1)).promoteTo(params[0].getClass()); } NumberInterface factorial = params[0]; NumberInterface multiplier = params[0]; //It is necessary to later prevent calls of factorial on anything but non-negative integers. while((multiplier = multiplier.subtract(NaiveNumber.ONE.promoteTo(multiplier.getClass()))).signum() == 1){ factorial = factorial.multiply(multiplier); } return factorial; } }); registerFunction("exp", new Function() { @Override protected boolean matchesParams(NumberInterface[] params) { return params.length == 1; } @Override protected NumberInterface applyInternal(NumberInterface[] params) { return sumSeries(params[0], StandardPlugin.this::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0])); } }); } @Override public void onDisable() { } /** * Returns the nth term of the Taylor series (centered at 0) of e^x * @param n the term required (n >= 0). * @param x the real number at which the series is evaluated. * @return the nth term of the series. */ private NumberInterface getExpSeriesTerm(int n, NumberInterface x){ return x.intPow(n).divide(this.getFunction("!").apply((new NaiveNumber(n)).promoteTo(x.getClass()))); } /** * Returns the number of terms needed to evaluate the exponential function (at x) * such that the error is at most maxError. * @param maxError Maximum error permissible (This should probably be positive.) * @param x where the function is evaluated. * @return the number of terms needed to evaluated the exponential function. */ private int getNTermsExp(NumberInterface maxError, NumberInterface x){ //We need n such that x^(n+2) <= (n+1)! * maxError //The variables LHS and RHS refer to the above inequality. int n = 0; NumberInterface LHS = x.intPow(2), RHS = maxError; while(LHS.compareTo(RHS) > 0){ n++; LHS = LHS.multiply(x); RHS = RHS.multiply(new NaiveNumber(n).promoteTo(RHS.getClass())); } return n; } /** * Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x. * @param x the value at which the series is evaluated. * @param nthTermFunction the function that returns the nth term of the series, in the format term(x, n). * @param n the number of terms in the partial sum. * @return the value of the partial sum that has the same class as x. */ private NumberInterface sumSeries(NumberInterface x, BiFunction nthTermFunction, int n){ NumberInterface sum = NaiveNumber.ZERO.promoteTo(x.getClass()); for(int i = 0; i <= n; i++){ sum = sum.add(nthTermFunction.apply(i, x)); } return sum; } /** * Returns the maximum error based on the precision of the class of number. * @param number Any instance of the NumberInterface in question (should return an appropriate precision). * @return the maximum error. */ private NumberInterface getMaxError(NumberInterface number){ return (new NaiveNumber(10)).promoteTo(number.getClass()).intPow(-number.precision()); } }