From 1c3714123424cd30164f70ecf618b7ab7db36650 Mon Sep 17 00:00:00 2001 From: Danila Fedorin Date: Mon, 16 Feb 2026 17:41:26 -0800 Subject: [PATCH] Add more properties about lattices Signed-off-by: Danila Fedorin --- Lattice.agda | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/Lattice.agda b/Lattice.agda index 6f03d7f..d63aed5 100644 --- a/Lattice.agda +++ b/Lattice.agda @@ -96,6 +96,12 @@ record IsSemilattice {a} (A : Set a) (a₁ ⊔ a) ⊔ (a₂ ⊔ a) ∎ + -- need to show: a₁ ⊔ (a₁ ⊔ a₂) ≈ a₁ ⊔ a₂ + -- (a₁ ⊔ a₁) ⊔ a₂ ≈ a₁ ⊔ (a₁ ⊔ a₂) + + x≼x⊔y : ∀ (a₁ a₂ : A) → a₁ ≼ (a₁ ⊔ a₂) + x≼x⊔y a₁ a₂ = ≈-sym (≈-trans (≈-⊔-cong (≈-sym (⊔-idemp a₁)) (≈-refl {a₂})) (⊔-assoc a₁ a₁ a₂)) + ≼-refl : ∀ (a : A) → a ≼ a ≼-refl a = ⊔-idemp a @@ -113,6 +119,18 @@ record IsSemilattice {a} (A : Set a) a₃ ∎ + ≼-antisym : ∀ {a₁ a₂ : A} → a₁ ≼ a₂ → a₂ ≼ a₁ → a₁ ≈ a₂ + ≼-antisym {a₁} {a₂} a₁⊔a₂≈a₂ a₂⊔a₁≈a₁ = + begin + a₁ + ∼⟨ ≈-sym a₂⊔a₁≈a₁ ⟩ + a₂ ⊔ a₁ + ∼⟨ ⊔-comm _ _ ⟩ + a₁ ⊔ a₂ + ∼⟨ a₁⊔a₂≈a₂ ⟩ + a₂ + ∎ + ≼-cong : ∀ {a₁ a₂ a₃ a₄ : A} → a₁ ≈ a₂ → a₃ ≈ a₄ → a₁ ≼ a₃ → a₂ ≼ a₄ ≼-cong {a₁} {a₂} {a₃} {a₄} a₁≈a₂ a₃≈a₄ a₁⊔a₃≈a₃ = begin