diff --git a/Lattice/Builder.agda b/Lattice/Builder.agda index d3d97f3..36db51e 100644 --- a/Lattice/Builder.agda +++ b/Lattice/Builder.agda @@ -40,16 +40,12 @@ record Graph : Set where edges : List Edge data Path : Node → Node → Set where - last : ∀ {n₁ n₂ : Node} → (n₁ , n₂) ∈ˡ edges → Path n₁ n₂ + done : ∀ {n : Node} → Path n n step : ∀ {n₁ n₂ n₃ : Node} → (n₁ , n₂) ∈ˡ edges → Path n₂ n₃ → Path n₁ n₃ - interior : ∀ {n₁ n₂} → Path n₁ n₂ → List Node - interior (last _) = [] - interior (step {n₂ = n₂} _ p) = n₂ ∷ interior p - _++_ : ∀ {n₁ n₂ n₃} → Path n₁ n₂ → Path n₂ n₃ → Path n₁ n₃ - last e ++ p = step e p - step e p ++ p' = step e (p ++ p') + done ++ p = p + (step e p₁) ++ p₂ = step e (p₁ ++ p₂) Adjacency : Set Adjacency = ∀ (n₁ n₂ : Node) → List (Path n₁ n₂) @@ -70,9 +66,9 @@ record Graph : Set where through-monotonic adj n p∈adjn₁n₂ = ∈ˡ-++⁺ʳ _ p∈adjn₁n₂ seedWithEdges : ∀ (es : List Edge) → (∀ {e} → e ∈ˡ es → e ∈ˡ edges) → Adjacency - seedWithEdges es e∈es⇒e∈edges = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) → Adjacency-update n₁ n₂ ((last n₁n₂∈edges) ∷_)) (λ n₁ n₂ → []) (mapWith∈ˡ es (λ {e} e∈es → (e , e∈es⇒e∈edges e∈es))) + seedWithEdges es e∈es⇒e∈edges = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) → Adjacency-update n₁ n₂ ((step n₁n₂∈edges done) ∷_)) (λ n₁ n₂ → []) (mapWith∈ˡ es (λ {e} e∈es → (e , e∈es⇒e∈edges e∈es))) - e∈seedWithEdges : ∀ {n₁ n₂ es} → (e∈es⇒e∈edges : ∀ {e} → e ∈ˡ es → e ∈ˡ edges) → ∀ (n₁n₂∈es : (n₁ , n₂) ∈ˡ es) → (last (e∈es⇒e∈edges n₁n₂∈es)) ∈ˡ seedWithEdges es e∈es⇒e∈edges n₁ n₂ + e∈seedWithEdges : ∀ {n₁ n₂ es} → (e∈es⇒e∈edges : ∀ {e} → e ∈ˡ es → e ∈ˡ edges) → ∀ (n₁n₂∈es : (n₁ , n₂) ∈ˡ es) → (step (e∈es⇒e∈edges n₁n₂∈es) done) ∈ˡ seedWithEdges es e∈es⇒e∈edges n₁ n₂ e∈seedWithEdges {es = []} e∈es⇒e∈edges () e∈seedWithEdges {es = (n₁' , n₂') ∷ es} e∈es⇒e∈edges (here refl) with n₁' ≟ n₁' | n₂' ≟ n₂' @@ -89,7 +85,7 @@ record Graph : Set where adj¹ : Adjacency adj¹ = seedWithEdges edges (λ x → x) - edge∈adj¹ : ∀ {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) → (last n₁n₂∈edges) ∈ˡ adj¹ n₁ n₂ + edge∈adj¹ : ∀ {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) → (step n₁n₂∈edges done) ∈ˡ adj¹ n₁ n₂ edge∈adj¹ = e∈seedWithEdges (λ x → x) throughAll : List Node → Adjacency @@ -106,4 +102,4 @@ record Graph : Set where adj = throughAll (proj₁ nodes) NoCycles : Set - NoCycles = ∀ (n : Node) → adj n n ≡ [] + NoCycles = ∀ (n : Node) → All (_≡ done) (adj n n)