diff --git a/Lattice/Builder.agda b/Lattice/Builder.agda index 3e2b224..9742089 100644 --- a/Lattice/Builder.agda +++ b/Lattice/Builder.agda @@ -512,6 +512,24 @@ eval _⊔?_ (e₁ ∨ e₂) = (eval _⊔?_ e₁) >>= (λ v₁ → (eval _⊔?_ PartiallySubHomo : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (_⊕_ : A → A → Maybe A) (_⊗_ : B → B → Maybe B) → Set (a ⊔ℓ b) PartiallySubHomo {A = A} f _⊕_ _⊗_ = ∀ (a₁ a₂ : A) → (f a₁ ⊗ f a₂) ≡ Maybe.map f (a₁ ⊕ a₂) +PartialAbsorb-map : ∀ {a b} {A : Set a} {B : Set b} + (f : A → B) + (_≈ᵃ_ : A → A → Set a) (_≈ᵇ_ : B → B → Set b) → + (∀ a₁ a₂ → a₁ ≈ᵃ a₂ → f a₁ ≈ᵇ f a₂) → + ∀ (_⊕₁_ : A → A → Maybe A) (_⊕₂_ : A → A → Maybe A) + (_⊗₁_ : B → B → Maybe B) (_⊗₂_ : B → B → Maybe B) → + PartiallySubHomo f _⊕₁_ _⊗₁_ → + PartiallySubHomo f _⊕₂_ _⊗₂_ → + PartialAbsorb _≈ᵃ_ _⊕₁_ _⊕₂_ → + ∀ (x y : A) → maybe (λ x⊗₂y → lift-≈ _≈ᵇ_ (f x ⊗₁ x⊗₂y) (just (f x))) (Trivial _) (f x ⊗₂ f y) +PartialAbsorb-map f _≈ᵃ_ _≈ᵇ_ ≈ᵃ⇒≈ᵇ _⊕₁_ _⊕₂_ _⊗₁_ _⊗₂_ psh₁ psh₂ absorbᵃ x y + with x ⊕₂ y | f x ⊗₂ f y | psh₂ x y | absorbᵃ x y +... | nothing | nothing | refl | _ = mkTrivial +... | just x⊕₂y | just fx⊗₂fy | refl | x⊕₁xy≈?x + with x ⊕₁ x⊕₂y | f x ⊗₁ (f x⊕₂y) | psh₁ x x⊕₂y | x⊕₁xy≈?x +... | just x⊕₁xy | just fx⊗₁fx⊕₂y | refl | ≈-just x⊕₁xy≈x = ≈-just (≈ᵃ⇒≈ᵇ _ _ x⊕₁xy≈x) + + -- this evaluation property, which depends on PartiallySubHomo, effectively makes -- it easier to talk about compound operations and the preservation of their -- structure when _⊗_ is PartiallySubHomo. @@ -619,19 +637,17 @@ lvCombine-absorb : ∀ {a} (f₁ f₂ : CombineForPLT a) → PartialAbsorb (eqL L) (lvCombine f₁ L) (lvCombine f₂ L) lvCombine-absorb f₁ f₂ absorb-f₁-f₂ [] () lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₁ v₁) (inj₁ v₂) - with f₂ plt v₁ v₂ | absorb-f₁-f₂ plt v₁ v₂ -... | nothing | _ = mkTrivial -... | just v₁⊗₂v₂ | v₁⊗₁v₁v₂≈?v₁ - with f₁ plt v₁ v₁⊗₂v₂ | v₁⊗₁v₁v₂≈?v₁ -... | just _ | ≈-just v₁⊗₁v₁v₂≈v₁ = ≈-just v₁⊗₁v₁v₂≈v₁ + = PartialAbsorb-map inj₁ _ _ (λ _ _ x → x) (f₁ plt) (f₂ plt) + (lvCombine f₁ (plt ∷ plts)) (lvCombine f₂ (plt ∷ plts)) + (λ _ _ → refl) (λ _ _ → refl) + (absorb-f₁-f₂ plt) v₁ v₂ lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₂ lv₁) (inj₁ v₂) = mkTrivial lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₁ v₁) (inj₂ lv₂) = mkTrivial lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₂ lv₁) (inj₂ lv₂) - with lvCombine f₂ plts lv₁ lv₂ | lvCombine-absorb f₁ f₂ absorb-f₁-f₂ plts lv₁ lv₂ -... | nothing | _ = mkTrivial -... | just lv₁⊗₂lv₂ | lv₁⊗₁lv₁lv₂≈?lv₁ - with lvCombine f₁ plts lv₁ lv₁⊗₂lv₂ | lv₁⊗₁lv₁lv₂≈?lv₁ -... | just _ | ≈-just lv₁⊗₁lv₁lv₂≈lv₁ = ≈-just lv₁⊗₁lv₁lv₂≈lv₁ + = PartialAbsorb-map inj₂ _ _ (λ _ _ x → x) (lvCombine f₁ plts) (lvCombine f₂ plts) + (lvCombine f₁ (plt ∷ plts)) (lvCombine f₂ (plt ∷ plts)) + (λ _ _ → refl) (λ _ _ → refl) + (lvCombine-absorb f₁ f₂ absorb-f₁-f₂ plts) lv₁ lv₂ absorb-lvJoin-lvMeet : ∀ {a} (L : List (PartialLatticeType a)) → PartialAbsorb (eqL L) (lvJoin L) (lvMeet L) absorb-lvJoin-lvMeet = lvCombine-absorb PartialLatticeType._⊔?_ PartialLatticeType._⊓?_ PartialLatticeType.absorb-⊔-⊓ @@ -978,12 +994,11 @@ pathMeet'-idemp {Ls = add-via-greatest l ls} (inj₂ p) = lift-≈-map inj₂ _ absorb-pathJoin'-pathMeet' : ∀ {a} {Ls : Layers a} → PartialAbsorb (eqPath' Ls) (pathJoin' Ls) (pathMeet' Ls) absorb-pathJoin'-pathMeet' {Ls = single l} lv₁ lv₂ = absorb-lvJoin-lvMeet (toList l) lv₁ lv₂ -absorb-pathJoin'-pathMeet' {Ls = add-via-least l ls} (inj₁ lv₁) (inj₁ lv₂) - with lvMeet (toList l) lv₁ lv₂ | absorb-lvJoin-lvMeet (toList l) lv₁ lv₂ -... | nothing | _ = mkTrivial -... | just lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁ - with lvJoin (toList l) lv₁ lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁ -... | just _ | ≈-just lv₁⊔lv₁lv₂≈lv₁ = ≈-just lv₁⊔lv₁lv₂≈lv₁ +absorb-pathJoin'-pathMeet' {Ls = Ls@(add-via-least l ls)} (inj₁ lv₁) (inj₁ lv₂) + = PartialAbsorb-map inj₁ _ _ (λ _ _ x → x) (lvJoin (toList l)) (lvMeet (toList l)) + (pathJoin' Ls) (pathMeet' Ls) + (λ _ _ → refl) (λ _ _ → refl) + (absorb-lvJoin-lvMeet (toList l)) lv₁ lv₂ absorb-pathJoin'-pathMeet' {Ls = add-via-least l {{least}} ls} (inj₂ p₁) (inj₁ lv₂) = pathJoin'-idemp {Ls = add-via-least l {{least}} ls} (inj₂ p₁) absorb-pathJoin'-pathMeet' {Ls = add-via-least l ls} (inj₁ lv₁) (inj₂ p₂) @@ -1004,12 +1019,11 @@ absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls {{greatest}} } (inj₂ p = pathJoin'-idemp {Ls = add-via-greatest l ls {{greatest}}} (inj₂ p₁) absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls} (inj₁ lv₁) (inj₂ p₂) = ≈-just (eqLv-refl l lv₁) -absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls} (inj₂ p₁) (inj₂ p₂) - with pathMeet' ls p₁ p₂ | absorb-pathJoin'-pathMeet' {Ls = ls} p₁ p₂ -... | nothing | _ = mkTrivial -... | just p₁⊓p₂ | p₁⊔p₁p₂≈?p₁ - with pathJoin' ls p₁ p₁⊓p₂ | p₁⊔p₁p₂≈?p₁ -... | just _ | ≈-just p₁⊔p₁p₂≈p₁ = ≈-just p₁⊔p₁p₂≈p₁ +absorb-pathJoin'-pathMeet' {Ls = Ls@(add-via-greatest l ls)} (inj₂ p₁) (inj₂ p₂) + = PartialAbsorb-map inj₂ _ _ (λ _ _ x → x) (pathJoin' ls) (pathMeet' ls) + (pathJoin' Ls) (pathMeet' Ls) + (λ _ _ → refl) (λ _ _ → refl) + (absorb-pathJoin'-pathMeet' {Ls = ls}) p₁ p₂ record _≈_ {a} {Ls : Layers a} (p₁ p₂ : Path Ls) : Set a where constructor mk-≈