From 845a8a2236d3846a4d4757150917437b3877c23f Mon Sep 17 00:00:00 2001 From: Danila Fedorin Date: Sat, 23 Sep 2023 15:06:43 -0700 Subject: [PATCH] Move the Map into Lattice/Map Signed-off-by: Danila Fedorin --- Equivalence.agda | 2 +- Lattice.agda | 4 ++-- Map.agda => Lattice/Map.agda | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) rename Map.agda => Lattice/Map.agda (99%) diff --git a/Equivalence.agda b/Equivalence.agda index 327b9bd..edac885 100644 --- a/Equivalence.agda +++ b/Equivalence.agda @@ -41,7 +41,7 @@ module IsEquivalenceInstances where (_≈₂_ : B → B → Set b) (eB : IsEquivalence B _≈₂_) where - open import Map A B ≡-dec-A using (Map; lift; subset) + open import Lattice.Map A B ≡-dec-A using (Map; lift; subset) open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map open IsEquivalence eB renaming diff --git a/Lattice.agda b/Lattice.agda index b49afd8..03b61b6 100644 --- a/Lattice.agda +++ b/Lattice.agda @@ -221,7 +221,7 @@ module IsSemilatticeInstances where (_⊔₂_ : B → B → B) (sB : IsSemilattice B _≈₂_ _⊔₂_) where - open import Map A B ≡-dec-A + open import Lattice.Map A B ≡-dec-A open IsSemilattice sB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-⊔-cong to ≈₂-⊔₂-cong ; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp @@ -336,7 +336,7 @@ module IsLatticeInstances where (_⊓₂_ : B → B → B) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where - open import Map A B ≡-dec-A + open import Lattice.Map A B ≡-dec-A open IsLattice lB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym ; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp diff --git a/Map.agda b/Lattice/Map.agda similarity index 99% rename from Map.agda rename to Lattice/Map.agda index 3cf083e..d7b79ee 100644 --- a/Map.agda +++ b/Lattice/Map.agda @@ -4,7 +4,7 @@ open import Relation.Binary.Core using (Rel) open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) -module Map {a b : Level} (A : Set a) (B : Set b) +module Lattice.Map {a b : Level} (A : Set a) (B : Set b) (≡-dec-A : Decidable (_≡_ {a} {A})) where