diff --git a/Lattice.agda b/Lattice.agda index 3194c1d..caa714c 100644 --- a/Lattice.agda +++ b/Lattice.agda @@ -90,33 +90,33 @@ module IsEquivalenceInstances where _⊆_ : Map → Map → Set (Agda.Primitive._⊔_ a b) _⊆_ = subset _≈₂_ - ⊆-refl : {m : Map} → m ⊆ m - ⊆-refl k v k,v∈m = (v , (≈₂-refl , k,v∈m)) + ⊆-refl : (m : Map) → m ⊆ m + ⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m)) - ⊆-trans : {m₁ m₂ m₃ : Map} → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃ - ⊆-trans m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = + ⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃ + ⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = let (v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ (v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂ in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) - ≈-refl : {m : Map} → m ≈ m - ≈-refl {m} = (⊆-refl {m}, ⊆-refl {m}) + ≈-refl : (m : Map) → m ≈ m + ≈-refl m = (⊆-refl m , ⊆-refl m) - ≈-sym : {m₁ m₂ : Map} → m₁ ≈ m₂ → m₂ ≈ m₁ - ≈-sym (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂) + ≈-sym : (m₁ m₂ : Map) → m₁ ≈ m₂ → m₂ ≈ m₁ + ≈-sym _ _ (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂) - ≈-trans : {m₁ m₂ m₃ : Map} → m₁ ≈ m₂ → m₂ ≈ m₃ → m₁ ≈ m₃ - ≈-trans {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) = - ( ⊆-trans {m₁} {m₂} {m₃} m₁⊆m₂ m₂⊆m₃ - , ⊆-trans {m₃} {m₂} {m₁} m₃⊆m₂ m₂⊆m₁ + ≈-trans : (m₁ m₂ m₃ : Map) → m₁ ≈ m₂ → m₂ ≈ m₃ → m₁ ≈ m₃ + ≈-trans m₁ m₂ m₃ (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) = + ( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃ + , ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁ ) LiftEquivalence : IsEquivalence Map _≈_ LiftEquivalence = record - { ≈-refl = λ {m₁} → ≈-refl {m₁} - ; ≈-sym = λ {m₁} {m₂} → ≈-sym {m₁} {m₂} - ; ≈-trans = λ {m₁} {m₂} {m₃} → ≈-trans {m₁} {m₂} {m₃} + { ≈-refl = λ {m₁} → ≈-refl m₁ + ; ≈-sym = λ {m₁} {m₂} → ≈-sym m₁ m₂ + ; ≈-trans = λ {m₁} {m₂} {m₃} → ≈-trans m₁ m₂ m₃ } module IsSemilatticeInstances where