From 99cc5af2435777c37f09624e81a5616af2a6e36c Mon Sep 17 00:00:00 2001 From: Danila Fedorin Date: Sat, 19 Aug 2023 16:30:53 -0700 Subject: [PATCH] Prove that Map equivalence is decidable Signed-off-by: Danila Fedorin --- Map.agda | 55 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 54 insertions(+), 1 deletion(-) diff --git a/Map.agda b/Map.agda index f8016e1..db2aee6 100644 --- a/Map.agda +++ b/Map.agda @@ -1,4 +1,4 @@ -open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong) +open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.Core using (Rel) open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ) @@ -533,6 +533,59 @@ module _ (_≈_ : B → B → Set b) where lift : Map → Map → Set (a ⊔ℓ b) lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁ + private + data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where + extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂ + mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈ v₂ → SubsetInfo m₁ m₂ + fine : subset m₁ m₂ → SubsetInfo m₁ m₂ + + SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (subset m₁ m₂) + SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) = + let (v , k,v∈m₁) = locate k∈km₁ + in no (λ m₁⊆m₂ → + let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ + in k∉km₂ (∈-cong proj₁ k,v'∈m₂)) + SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) = + no (λ m₁⊆m₂ → + let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁ + in v₁̷≈v₂ (subst (λ v'' → v₁ ≈ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst... + SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂ + + + module _ (≈-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈ b₂)) where + private + compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂ + compute-SubsetInfo ([] , _) m₂ = fine (λ k v ()) + compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂) + with compute-SubsetInfo (xs₁ , uxs₁) m₂ + ... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂ + ... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ = + mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂ + ... | fine xs₁⊆m₂ with ∈k-dec k l₂ + ... | no k∉km₂ = extra k (here refl) k∉km₂ + ... | yes k∈km₂ with locate k∈km₂ + ... | (v' , k,v'∈m₂) with ≈-dec v v' + ... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v' + ... | yes v≈v' = fine m₁⊆m₂ + where + m₁⊆m₂ : subset m₁ m₂ + m₁⊆m₂ k' v'' (here k,v≡k',v'') + rewrite cong proj₁ k,v≡k',v'' + rewrite cong proj₂ k,v≡k',v'' = + (v' , (v≈v' , k,v'∈m₂)) + m₁⊆m₂ k' v'' (there k,v≡k',v'') = + xs₁⊆m₂ k' v'' k,v≡k',v'' + + subset-dec : ∀ m₁ m₂ → Dec (subset m₁ m₂) + subset-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂) + + lift-dec : ∀ m₁ m₂ → Dec (lift m₁ m₂) + lift-dec m₁ m₂ + with subset-dec m₁ m₂ | subset-dec m₂ m₁ + ... | yes m₁⊆m₂ | yes m₂⊆m₁ = yes (m₁⊆m₂ , m₂⊆m₁) + ... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) → m₂̷⊆m₁ m₂⊆m₁) + ... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) → m₁̷⊆m₂ m₁⊆m₂) + module _ (≈-refl : ∀ {b : B} → b ≈ b) (≈-sym : ∀ {b₁ b₂ : B} → b₁ ≈ b₂ → b₂ ≈ b₁) (f : B → B → B) where