From afe5bac2dc2fed94c0974fbee5e4d8a5ed068ad1 Mon Sep 17 00:00:00 2001 From: Danila Fedorin Date: Sun, 10 Mar 2024 13:54:19 -0700 Subject: [PATCH] Commit result of (unsuccessfully) trying to prove monotonicity of plus. Signed-off-by: Danila Fedorin --- Analysis/Sign.agda | 62 +++++++++++++++++++++++++++++++++++++--------- 1 file changed, 50 insertions(+), 12 deletions(-) diff --git a/Analysis/Sign.agda b/Analysis/Sign.agda index f8cfd96..20ba11b 100644 --- a/Analysis/Sign.agda +++ b/Analysis/Sign.agda @@ -1,10 +1,11 @@ module Analysis.Sign where open import Data.String using (String) renaming (_≟_ to _≟ˢ_) -open import Data.Product using (proj₁) -open import Data.List using (foldr) +open import Data.Product using (_×_; proj₁; _,_) +open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans) open import Relation.Nullary using (¬_; Dec; yes; no) +open import Data.Unit using (⊤) open import Language open import Lattice @@ -30,19 +31,56 @@ _≟ᵍ_ 0ˢ + = no (λ ()) _≟ᵍ_ 0ˢ - = no (λ ()) _≟ᵍ_ 0ˢ 0ˢ = yes refl +-- embelish 'sign' with a top and bottom element. +open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB + using () + renaming + ( AboveBelow to SignLattice + ; ≈-dec to ≈ᵍ-dec + ; ⊥ to ⊥ᵍ + ; ⊤ to ⊤ᵍ + ; [_] to [_]ᵍ + ; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ + ; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ + ; ≈-lift to ≈ᵍ-lift + ) +-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. +open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited) + +finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ + +open FiniteHeightLattice finiteHeightLatticeᵍ + using () + renaming + ( _≼_ to _≼ᵍ_ + ; _≈_ to _≈ᵍ_ + ; _⊔_ to _⊔ᵍ_ + ; ≈-refl to ≈ᵍ-refl + ) + +plus : SignLattice → SignLattice → SignLattice +plus ⊥ᵍ _ = ⊥ᵍ +plus _ ⊥ᵍ = ⊥ᵍ +plus ⊤ᵍ _ = ⊤ᵍ +plus _ ⊤ᵍ = ⊤ᵍ +plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ +plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ +plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ +plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ +plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ +plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ +plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ +plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ +plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ + +-- this is incredibly tedious: 125 cases per monotonicity proof, and tactics +-- are hard. postulate for now. +postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂) +postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) + module _ (prog : Program) where open Program prog - -- embelish 'sign' with a top and bottom element. - open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB - using () - renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec) - -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. - open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited) - - - finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ - -- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators. open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec using ()