diff --git a/Analysis/Forward/Lattices.agda b/Analysis/Forward/Lattices.agda index 3df50bf..9b28a5f 100644 --- a/Analysis/Forward/Lattices.agda +++ b/Analysis/Forward/Lattices.agda @@ -65,7 +65,7 @@ open IsLattice isLatticeᵛ ; ⊔-idemp to ⊔ᵛ-idemp ) public -open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L vars vars-Unique +open VariableValuesFiniteMap.FixedHeight vars-Unique using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵛ @@ -93,8 +93,7 @@ open StateVariablesFiniteMap ; ≈-sym to ≈ᵐ-sym ) public - -open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues states states-Unique +open StateVariablesFiniteMap.FixedHeight states-Unique using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵐ diff --git a/Lattice/FiniteMap.agda b/Lattice/FiniteMap.agda index 821c617..4692b89 100644 --- a/Lattice/FiniteMap.agda +++ b/Lattice/FiniteMap.agda @@ -281,7 +281,7 @@ Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v ... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) = ((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂))) -module IterProdIsomorphism where +private module IterProdIsomorphism where open WithKeys open import Data.Unit using (tt) open import Lattice.Unit using () @@ -323,15 +323,12 @@ module IterProdIsomorphism where in (((k , v) ∷ fm' , push k≢fm' ufm') , kvs≡ks) + _≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set + _≈ⁱᵖ_ {n} = IP._≈_ {n} - private - _≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set - _≈ⁱᵖ_ {n} = IP._≈_ {n} - - _⊔ⁱᵖ_ : ∀ {ks : List A} → - IterProd (length ks) → IterProd (length ks) → IterProd (length ks) - _⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks} - + _⊔ⁱᵖ_ : ∀ {ks : List A} → + IterProd (length ks) → IterProd (length ks) → IterProd (length ks) + _⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks} to-build : ∀ {b : B} {ks : List A} (uks : Unique ks) → let fm = to uks (IP.build b tt (length ks)) @@ -615,7 +612,7 @@ module IterProdIsomorphism where in (v' , (v₁⊔v₂≈v' , there v'∈fm')) - module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : ℕ} {{fhB : FixedHeight₂ h₂}} where + module FixedHeight {ks : List A} {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : ℕ} {{fhB : FixedHeight₂ h₂}} (uks : Unique ks) where import Isomorphism open Isomorphism.TransportFiniteHeight (IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks) @@ -635,3 +632,4 @@ module IterProdIsomorphism where to-build uks k v k,v∈⊥ open WithKeys ks public +module FixedHeight = IterProdIsomorphism.FixedHeight