open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong) open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.Core using (Rel) open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ) open import Agda.Primitive using (Level; _⊔_) module Map {a b : Level} (A : Set a) (B : Set b) (≡-dec-A : Decidable (_≡_ {a} {A})) where import Data.List.Membership.Propositional as MemProp open import Relation.Nullary using (¬_) open import Data.Nat using (ℕ) open import Data.List using (List; map; []; _∷_; _++_) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂) open import Data.Empty using (⊥) keys : List (A × B) → List A keys = map proj₁ data Unique {c} {C : Set c} : List C → Set c where empty : Unique [] push : ∀ {x : C} {xs : List C} → All (λ x' → ¬ x ≡ x') xs → Unique xs → Unique (x ∷ xs) Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ [])) Unique-append {c} {C} {x} {[]} _ _ = push [] empty Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs') where x'≢x : ¬ x' ≡ x x'≢x x'≡x = x∉xs (here (sym x'≡x)) help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ [])) help {[]} _ = x'≢x ∷ [] help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs absurd : ∀ {a} {A : Set a} → ⊥ → A absurd () private module _ where open MemProp using (_∈_) unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l) unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x) unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) = unique-not-in (rest , k,v'∈xs) ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v' ListAB-functional _ (here k,v≡x) (here k,v'≡x) = cong proj₂ (trans k,v≡x (sym k,v'≡x)) ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs) rewrite sym k,v≡x = absurd (unique-not-in (k≢xs , k,v'∈xs)) ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x) rewrite sym k,v'≡x = absurd (unique-not-in (k≢xs , k,v∈xs)) ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) = ListAB-functional uxs k,v∈xs k,v'∈xs ∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ keys l) ∈k-dec k [] = no (λ ()) ∈k-dec k ((k' , v) ∷ xs) with (≡-dec-A k k') ... | yes k≡k' = yes (here k≡k') ... | no k≢k' with (∈k-dec k xs) ... | yes k∈kxs = yes (there k∈kxs) ... | no k∉kxs = no witness where witness : ¬ k ∈ keys ((k' , v) ∷ xs) witness (here k≡k') = k≢k' k≡k' witness (there k∈kxs) = k∉kxs k∈kxs ∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} → (f : C → D) → c ∈ l → f c ∈ map f l ∈-cong f (here c≡c') = here (cong f c≡c') ∈-cong f (there c∈xs) = there (∈-cong f c∈xs) locate : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l) locate {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl) locate {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate k∈kxs in (v , there k,v∈xs) private module ImplRelation (_≈_ : B → B → Set b) where open MemProp using (_∈_) subset : List (A × B) → List (A × B) → Set (a ⊔ b) subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ → Σ B (λ v' → v ≈ v' × ((k , v') ∈ m₂)) private module ImplInsert (f : B → B → B) where open import Data.List using (map) open MemProp using (_∈_) private _∈k_ : A → List (A × B) → Set a _∈k_ k m = k ∈ (keys m) foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C foldr f b [] = b foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs) insert : A → B → List (A × B) → List (A × B) insert k v [] = (k , v) ∷ [] insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k' ... | yes _ = (k' , f v v') ∷ xs ... | no _ = x ∷ insert k v xs union : List (A × B) → List (A × B) → List (A × B) union m₁ m₂ = foldr insert m₂ m₁ insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} → k ∈k l → keys l ≡ keys (insert k v l) insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k') with (≡-dec-A k k') ... | yes _ = refl ... | no k≢k' = absurd (k≢k' k≡k') insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs) with (≡-dec-A k k') ... | yes _ = refl ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs) insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l) insert-keys-∉ {k} {v} {[]} _ = refl insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl with (≡-dec-A k k') ... | yes k≡k' = absurd (k∉kl (here k≡k')) ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} → Unique (keys l) → Unique (keys (insert k v l)) insert-preserves-Unique {k} {v} {l} u with (∈k-dec k l) ... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u ... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) → Unique (keys l₂) → Unique (keys (union l₁ l₂)) union-preserves-Unique [] l₂ u₂ = u₂ union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ = insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂) insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ k ∈k l → (k , v) ∈ insert k v l insert-fresh {l = []} k∉kl = here refl insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl with ≡-dec-A k k' ... | yes k≡k' = absurd (k∉kl (here k≡k')) ... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → ¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k' insert-preserves-∉k {l = []} k≢k' k∉kl (there ()) insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil with ≡-dec-A k k'' ... | yes k≡k'' = k∉kl (here k≡k'') ... | no k≢k'' with ≡-dec-A k' k'' | k∈kil ... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k'' ... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs) ... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'') ... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k' (λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂ union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂ union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂ with ≡-dec-A k k' ... | yes k≡k' = absurd (k∉kl₁ (here k≡k')) ... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂) insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} → ¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x) rewrite sym k,v=x with ≡-dec-A k' k ... | yes k'≡k = absurd (k≢k' (sym k'≡k)) ... | no _ = here refl insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs) with ≡-dec-A k' k'' ... | yes _ = there k,v∈xs ... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs) insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → ¬ k ≡ k' → k ∈k l → k ∈k insert k' v' l insert-preserves-∈k k≢k' k∈kl = let (v , k,v∈l) = locate k∈kl in ∈-cong proj₁ (insert-preserves-∈ k≢k' k,v∈l) union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂ union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ = let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂ in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ = insert-preserves-∈ k≢k' k,v∈mxs₁l where k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂ k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁)) ... | no k≢k' = k≢k' union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂ rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' = insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂) insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l) insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'') rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v'' with ≡-dec-A k' k' ... | yes _ = here refl ... | no k≢k' = absurd (k≢k' refl) insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs) with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs)) ... | no k≢k' = there (insert-combines uxs k,v'∈xs) union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂ union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂ rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) = insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂) union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ = insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂) where k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁)) ... | no k≢k' = k≢k' Map : Set (a ⊔ b) Map = Σ (List (A × B)) (λ l → Unique (keys l)) _∈_ : (A × B) → Map → Set (a ⊔ b) _∈_ p (kvs , _) = MemProp._∈_ p kvs _∈k_ : A → Map → Set a _∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs) Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v' Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m data Expr : Set (a ⊔ b) where `_ : Map → Expr _∪_ : Expr → Expr → Expr module _ (f : B → B → B) where open ImplInsert f renaming ( insert to insert-impl ; union to union-impl ) insert : A → B → Map → Map insert k v (kvs , uks) = (insert-impl k v kvs , insert-preserves-Unique uks) union : Map → Map → Map union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂) ⟦_⟧ : Expr -> Map ⟦ ` m ⟧ = m ⟦ e₁ ∪ e₂ ⟧ = union ⟦ e₁ ⟧ ⟦ e₂ ⟧ data Provenance (k : A) : B → Expr → Set (a ⊔ b) where single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m) in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂) in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂) bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (f v₁ v₂) (e₁ ∪ e₂) Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧)) Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m)) Expr-Provenance k (e₁ ∪ e₂) k∈ke₁e₂ with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧) ... | yes k∈ke₁ | yes k∈ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (f v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)) ... | yes k∈ke₁ | no k∉ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂)) ... | no k∉ke₁ | yes k∈ke₂ = let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂)) ... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂) module _ (_≈_ : B → B → Set b) where open ImplRelation _≈_ renaming (subset to subset-impl) subset : Map → Map → Set (a ⊔ b) subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂ lift : Map → Map → Set (a ⊔ b) lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁ module _ (f : B → B → B) where module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≡ f b₂ b₁) (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≡ f b₁ (f b₁ b₂)) where union-comm : ∀ (m₁ m₂ : Map) → lift (_≡_) (union f m₁ m₂) (union f m₂ m₁) union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁) where union-comm-subset : ∀ (m₁ m₂ : Map) → subset (_≡_) (union f m₁ m₂) (union f m₂ m₁) union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂ with Expr-Provenance f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂) ... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ = (f v₂ v₁ , (f-comm v₁ v₂ , ImplInsert.union-combines f u₂ u₁ v₂∈m₂ v₁∈m₁)) ... | (_ , (in₁ {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ = (v₁ , (refl , ImplInsert.union-preserves-∈₂ f k∉km₂ v₁∈m₁)) ... | (_ , (in₂ {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ = (v₂ , (refl , ImplInsert.union-preserves-∈₁ f u₂ v₂∈m₂ k∉km₁)) union-assoc₁ : ∀ (m₁ m₂ m₃ : Map) → subset (_≡_) (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃)) union-assoc₁ m₁ m₂ m₃ k v k,v∈m₁₂m₃ with Expr-Provenance f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃) ... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃)) = {!!} ... | (_ , (in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke3 , v₂∈m₁₂m₃)) = {!!} ... | (_ , (bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃)) = {!!} ... | (_ , (in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃)) = {!!} ... | (_ , (bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃)) = {!!} ... | (_ , (in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃) = {!!} ... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃)) = {!!}