module Lattice where open import Equivalence import Chain import Data.Nat.Properties as NatProps open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Relation.Binary.Definitions open import Relation.Binary.Core using (_Preserves_⟶_ ) open import Relation.Nullary using (Dec; ¬_; yes; no) open import Data.Nat as Nat using (ℕ; _≤_; _+_; suc) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_) open import Function.Definitions using (Injective) open import Data.Empty using (⊥) absurd : ∀ {a} {A : Set a} → ⊥ → A absurd () record IsDecidable {a} {A : Set a} (R : A → A → Set a) : Set a where field R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂) record IsSemilattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) : Set a where _≼_ : A → A → Set a a ≼ b = Σ A (λ c → (a ⊔ c) ≈ b) _≺_ : A → A → Set a a ≺ b = (a ≼ b) × (¬ a ≈ b) field ≈-equiv : IsEquivalence A _≈_ ≈-⊔-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈ a₂ → a₃ ≈ a₄ → (a₁ ⊔ a₃) ≈ (a₂ ⊔ a₄) ⊔-assoc : (x y z : A) → ((x ⊔ y) ⊔ z) ≈ (x ⊔ (y ⊔ z)) ⊔-comm : (x y : A) → (x ⊔ y) ≈ (y ⊔ x) ⊔-idemp : (x : A) → (x ⊔ x) ≈ x open IsEquivalence ≈-equiv public ≼-refl : ∀ (a : A) → a ≼ a ≼-refl a = (a , ⊔-idemp a) ≼-cong : ∀ {a₁ a₂ a₃ a₄ : A} → a₁ ≈ a₂ → a₃ ≈ a₄ → a₁ ≼ a₃ → a₂ ≼ a₄ ≼-cong a₁≈a₂ a₃≈a₄ (c₁ , a₁⊔c₁≈a₃) = (c₁ , ≈-trans (≈-⊔-cong (≈-sym a₁≈a₂) ≈-refl) (≈-trans a₁⊔c₁≈a₃ a₃≈a₄)) ≺-cong : ∀ {a₁ a₂ a₃ a₄ : A} → a₁ ≈ a₂ → a₃ ≈ a₄ → a₁ ≺ a₃ → a₂ ≺ a₄ ≺-cong a₁≈a₂ a₃≈a₄ (a₁≼a₃ , a₁̷≈a₃) = ( ≼-cong a₁≈a₂ a₃≈a₄ a₁≼a₃ , λ a₂≈a₄ → a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄))) ) record IsLattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set a where field joinSemilattice : IsSemilattice A _≈_ _⊔_ meetSemilattice : IsSemilattice A _≈_ _⊓_ absorb-⊔-⊓ : (x y : A) → (x ⊔ (x ⊓ y)) ≈ x absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x open IsSemilattice joinSemilattice public open IsSemilattice meetSemilattice public using () renaming ( ⊔-assoc to ⊓-assoc ; ⊔-comm to ⊓-comm ; ⊔-idemp to ⊓-idemp ; ≈-⊔-cong to ≈-⊓-cong ; _≼_ to _≽_ ; _≺_ to _≻_ ; ≼-refl to ≽-refl ) record IsFiniteHeightLattice {a} (A : Set a) (h : ℕ) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set (lsuc a) where field isLattice : IsLattice A _≈_ _⊔_ _⊓_ fixedHeight : Chain.Height (_≈_) (IsLattice.≈-equiv isLattice) (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice) h open IsLattice isLattice public module _ {a b} {A : Set a} {B : Set b} (_≼₁_ : A → A → Set a) (_≼₂_ : B → B → Set b) where Monotonic : (A → B) → Set (a ⊔ℓ b) Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂ module ChainMapping {a b} {A : Set a} {B : Set b} {_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b} {_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B} (slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv; ≺-cong to ≺₁-cong) open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv; ≺-cong to ≺₂-cong) open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; step to step₁; done to done₁) open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; step to step₂; done to done₂) Chain-map : ∀ (f : A → B) → Monotonic _≼₁_ _≼₂_ f → Injective _≈₁_ _≈₂_ f → f Preserves _≈₁_ ⟶ _≈₂_ → ∀ {a₁ a₂ : A} {n : ℕ} → Chain₁ a₁ a₂ n → Chain₂ (f a₁) (f a₂) n Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (done₁ a₁≈a₂) = done₂ (Preservesᶠ a₁≈a₂) Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (step₁ (a₁≼₁a , a₁̷≈₁a) a≈₁a' a'a₂) = let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa → a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa)) fa≈fa' = Preservesᶠ a≈₁a' in step₂ fa₁≺₂fa fa≈fa' (Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ a'a₂) record Semilattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A isSemilattice : IsSemilattice A _≈_ _⊔_ open IsSemilattice isSemilattice public record Lattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A _⊓_ : A → A → A isLattice : IsLattice A _≈_ _⊔_ _⊓_ open IsLattice isLattice public module IsSemilatticeInstances where module ForNat where open Nat open NatProps open Eq private ≡-⊔-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≡ a₂ → a₃ ≡ a₄ → (a₁ ⊔ a₃) ≡ (a₂ ⊔ a₄) ≡-⊔-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl ≡-⊓-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≡ a₂ → a₃ ≡ a₄ → (a₁ ⊓ a₃) ≡ (a₂ ⊓ a₄) ≡-⊓-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl NatIsMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_ NatIsMaxSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ≈-⊔-cong = ≡-⊔-cong ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idem } NatIsMinSemilattice : IsSemilattice ℕ _≡_ _⊓_ NatIsMinSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ≈-⊔-cong = ≡-⊓-cong ; ⊔-assoc = ⊓-assoc ; ⊔-comm = ⊓-comm ; ⊔-idemp = ⊓-idem } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (sA : IsSemilattice A _≈₁_ _⊔₁_) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open Eq open Data.Product module ProdEquiv = IsEquivalenceInstances.ForProd _≈₁_ _≈₂_ (IsSemilattice.≈-equiv sA) (IsSemilattice.≈-equiv sB) open ProdEquiv using (_≈_) public infixl 20 _⊔_ _⊔_ : A × B → A × B → A × B (a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂) ProdIsSemilattice : IsSemilattice (A × B) _≈_ _⊔_ ProdIsSemilattice = record { ≈-equiv = ProdEquiv.ProdEquivalence ; ≈-⊔-cong = λ (a₁≈a₂ , b₁≈b₂) (a₃≈a₄ , b₃≈b₄) → ( IsSemilattice.≈-⊔-cong sA a₁≈a₂ a₃≈a₄ , IsSemilattice.≈-⊔-cong sB b₁≈b₂ b₃≈b₄ ) ; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) → ( IsSemilattice.⊔-assoc sA a₁ a₂ a₃ , IsSemilattice.⊔-assoc sB b₁ b₂ b₃ ) ; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂) → ( IsSemilattice.⊔-comm sA a₁ a₂ , IsSemilattice.⊔-comm sB b₁ b₂ ) ; ⊔-idemp = λ (a , b) → ( IsSemilattice.⊔-idemp sA a , IsSemilattice.⊔-idemp sB b ) } module ForMap {a} {A B : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set a) (_⊔₂_ : B → B → B) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open import Map A B ≡-dec-A open IsSemilattice sB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-⊔-cong to ≈₂-⊔₂-cong ; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp ) module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB) open MapEquiv using (_≈_) public infixl 20 _⊔_ infixl 20 _⊓_ _⊔_ : Map → Map → Map m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂ _⊓_ : Map → Map → Map m₁ ⊓ m₂ = intersect _⊔₂_ m₁ m₂ MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_ MapIsUnionSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} → union-cong _≈₂_ _⊔₂_ ≈₂-⊔₂-cong {m₁} {m₂} {m₃} {m₄} ; ⊔-assoc = union-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = union-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = union-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } MapIsIntersectSemilattice : IsSemilattice Map _≈_ _⊓_ MapIsIntersectSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} → intersect-cong _≈₂_ _⊔₂_ ≈₂-⊔₂-cong {m₁} {m₂} {m₃} {m₄} ; ⊔-assoc = intersect-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = intersect-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = intersect-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } module IsLatticeInstances where module ForNat where open Nat open NatProps open Eq open IsSemilatticeInstances.ForNat open Data.Product private max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z max-bound₁ {x} {y} {z} x⊔y≡z rewrite sym x⊔y≡z rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl) min-bound₁ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ x min-bound₁ {x} {y} {z} x⊓y≡z rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl) minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x)) where x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl) -- >:( helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y) helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y where x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl) -- >:( helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x NatIsLattice : IsLattice ℕ _≡_ _⊔_ _⊓_ NatIsLattice = record { joinSemilattice = NatIsMaxSemilattice ; meetSemilattice = NatIsMinSemilattice ; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y} ; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y} } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where module ProdJoin = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ (IsLattice.joinSemilattice lA) (IsLattice.joinSemilattice lB) open ProdJoin using (_⊔_; _≈_) public module ProdMeet = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊓₁_ _⊓₂_ (IsLattice.meetSemilattice lA) (IsLattice.meetSemilattice lB) open ProdMeet using () renaming (_⊔_ to _⊓_) public ProdIsLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_ ProdIsLattice = record { joinSemilattice = ProdJoin.ProdIsSemilattice ; meetSemilattice = ProdMeet.ProdIsSemilattice ; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊔-⊓ lA a₁ a₂ , IsLattice.absorb-⊔-⊓ lB b₁ b₂ ) ; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊓-⊔ lA a₁ a₂ , IsLattice.absorb-⊓-⊔ lB b₁ b₂ ) } module ForMap {a} {A B : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set a) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where open import Map A B ≡-dec-A open IsLattice lB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym ; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp ; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂ ) module MapJoin = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊔₂_ (IsLattice.joinSemilattice lB) open MapJoin using (_⊔_; _≈_) public module MapMeet = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊓₂_ (IsLattice.meetSemilattice lB) open MapMeet using (_⊓_) public MapIsLattice : IsLattice Map _≈_ _⊔_ _⊓_ MapIsLattice = record { joinSemilattice = MapJoin.MapIsUnionSemilattice ; meetSemilattice = MapMeet.MapIsIntersectSemilattice ; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂ ; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂ } module IsFiniteHeightLatticeInstances where module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (decA : IsDecidable _≈₁_) (decB : IsDecidable _≈₂_) (_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (h₁ h₂ : ℕ) (lA : IsFiniteHeightLattice A h₁ _≈₁_ _⊔₁_ _⊓₁_) (lB : IsFiniteHeightLattice B h₂ _≈₂_ _⊔₂_ _⊓₂_) where open NatProps module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB) open ProdLattice using (_⊔_; _⊓_; _≈_) public open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv) open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-trans to ≈₁-trans; ≈-sym to ≈₁-sym; _≺_ to _≺₁_; ≺-cong to ≺₁-cong) open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; _≺_ to _≺₂_; ≺-cong to ≺₂-cong) open IsDecidable decA using () renaming (R-dec to ≈₁-dec) open IsDecidable decB using () renaming (R-dec to ≈₂-dec) module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice) module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice) module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁) open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁) open ProdChain using (Chain; concat; done; step) private a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b)) a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂)) a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_ a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂) ∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b)) ∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b)) ∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_ ∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl) amin : A amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))) amax : A amax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))) bmin : B bmin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))) bmax : B bmax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))) unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂))) unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl)) unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} (((d₁ , d₂) , (a₁⊔d₁≈a , b₁⊔d₂≈b)) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂) with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂ ... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = absurd (a₁b₁̷≈ab (a₁≈a , b₁≈b)) ... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((suc n₁ , n₂) , ((step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂))) ... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ ((d₂ , b₁⊔d₂≈b) , b₁̷≈b) b≈b' c₂) , subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂) )) ... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((suc n₁ , suc n₂) , ( (step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , step₂ ((d₂ , b₁⊔d₂≈b) , b₁̷≈b) b≈b' c₂) , ≤-stepsˡ 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)) )) ProdIsFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_ ProdIsFiniteHeightLattice = record { isLattice = ProdLattice.ProdIsLattice ; fixedHeight = ( ( ((amin , bmin) , (amax , bmax)) , concat (ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))) (ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))) ) , λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂ in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ (IsFiniteHeightLattice.fixedHeight lA) a₁a₂) (proj₂ (IsFiniteHeightLattice.fixedHeight lB) b₁b₂)) ) } module FixedHeightLatticeIsBounded {a} {A : Set a} {h : ℕ} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (decA : IsDecidable _≈_) (lA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_) where open IsFiniteHeightLattice lA using (_≼_; _≺_; fixedHeight; ≈-equiv; ≈-refl; ≈-sym; ≈-trans; ≼-refl; ≼-cong; ≺-cong; ≈-⊔-cong; absorb-⊔-⊓; ⊔-comm; ⊓-comm) open IsDecidable decA using () renaming (R-dec to ≈-dec) open NatProps using (+-comm; m+1+n≰m) module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong A-BoundedBelow : Σ A (λ ⊥ᴬ → ∀ (a : A) → ⊥ᴬ ≼ a) A-BoundedBelow = (⊥ᴬ , ⊥ᴬ≼) where ⊥ᴬ : A ⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight)) ⊥ᴬ≼ : ∀ (a : A) → ⊥ᴬ ≼ a ⊥ᴬ≼ a with ≈-dec a ⊥ᴬ ... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a) ... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ) ... | yes ⊥ᴬ≈a⊓⊥ᴬ = (a , ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))) ... | no ⊥ᴬ̷≈a⊓⊥ᴬ = absurd (m+1+n≰m h h+1≤h) where ⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ ⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _)) x≺⊥ᴬ : (⊥ᴬ ⊓ a) ≺ ⊥ᴬ x≺⊥ᴬ = ((⊥ᴬ , ≈-trans (⊔-comm _ _) (≈-trans (≈-refl {⊥ᴬ ⊔ (⊥ᴬ ⊓ a)}) (absorb-⊔-⊓ ⊥ᴬ a))) , ⊥ᴬ⊓a̷≈⊥ᴬ) h+1≤h : h + 1 ≤ h h+1≤h rewrite (+-comm h 1) = proj₂ fixedHeight (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))) module FixedPoint {a} {A : Set a} (h : ℕ) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) (isFiniteHeightLattice : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_) (f : A → A) (Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ isFiniteHeightLattice) (IsFiniteHeightLattice._≼_ isFiniteHeightLattice) f) where open IsFiniteHeightLattice isFiniteHeightLattice