module Lattice.Builder where open import Lattice open import Equivalence open import Utils using (fins; fins-complete) open import Data.Nat as Nat using (ℕ) open import Data.Fin as Fin using (Fin; suc; zero; _≟_) open import Data.Maybe as Maybe using (Maybe; just; nothing; _>>=_; maybe) open import Data.Maybe.Properties using (just-injective) open import Data.Unit using (⊤; tt) open import Data.List.NonEmpty using (List⁺; tail; toList) renaming (_∷_ to _∷⁺_) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_; mapWith∈ to mapWith∈ˡ) open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.All using (All; []; _∷_; map) open import Data.List using (List; _∷_; []; cartesianProduct; cartesianProductWith; foldr) renaming (_++_ to _++ˡ_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (Σ; _,_; _×_; proj₁; proj₂) open import Data.Empty using (⊥; ⊥-elim) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_) record Graph : Set where constructor mkGraph field size : ℕ Node : Set Node = Fin size nodes = fins size nodes-complete = fins-complete size Edge : Set Edge = Node × Node field edges : List Edge data Path : Node → Node → Set where last : ∀ {n₁ n₂ : Node} → (n₁ , n₂) ∈ˡ edges → Path n₁ n₂ step : ∀ {n₁ n₂ n₃ : Node} → (n₁ , n₂) ∈ˡ edges → Path n₂ n₃ → Path n₁ n₃ interior : ∀ {n₁ n₂} → Path n₁ n₂ → List Node interior (last _) = [] interior (step {n₂ = n₂} _ p) = n₂ ∷ interior p _++_ : ∀ {n₁ n₂ n₃} → Path n₁ n₂ → Path n₂ n₃ → Path n₁ n₃ last e ++ p = step e p step e p ++ p' = step e (p ++ p') Adjacency : Set Adjacency = ∀ (n₁ n₂ : Node) → List (Path n₁ n₂) Adjacency-update : ∀ (n₁ n₂ : Node) → (List (Path n₁ n₂) → List (Path n₁ n₂)) → Adjacency → Adjacency Adjacency-update n₁ n₂ f adj n₁' n₂' with n₁ ≟ n₁' | n₂ ≟ n₂' ... | yes refl | yes refl = f (adj n₁ n₂) ... | _ | _ = adj n₁' n₂' Adjacency-merge : Adjacency → Adjacency → Adjacency Adjacency-merge adj₁ adj₂ n₁ n₂ = adj₁ n₁ n₂ ++ˡ adj₂ n₁ n₂ through : Node → Adjacency → Adjacency through n adj n₁ n₂ = cartesianProductWith _++_ (adj n₁ n) (adj n n₂) ++ˡ adj n₁ n₂ through-monotonic : ∀ adj n {n₁ n₂ p} → p ∈ˡ adj n₁ n₂ → p ∈ˡ (through n adj) n₁ n₂ through-monotonic adj n p∈adjn₁n₂ = ∈ˡ-++⁺ʳ _ p∈adjn₁n₂ seedWithEdges : ∀ (es : List Edge) → (∀ {e} → e ∈ˡ es → e ∈ˡ edges) → Adjacency seedWithEdges es e∈es⇒e∈edges = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) → Adjacency-update n₁ n₂ ((last n₁n₂∈edges) ∷_)) (λ n₁ n₂ → []) (mapWith∈ˡ es (λ {e} e∈es → (e , e∈es⇒e∈edges e∈es))) e∈seedWithEdges : ∀ {n₁ n₂ es} → (e∈es⇒e∈edges : ∀ {e} → e ∈ˡ es → e ∈ˡ edges) → ∀ (n₁n₂∈es : (n₁ , n₂) ∈ˡ es) → (last (e∈es⇒e∈edges n₁n₂∈es)) ∈ˡ seedWithEdges es e∈es⇒e∈edges n₁ n₂ e∈seedWithEdges {es = []} e∈es⇒e∈edges () e∈seedWithEdges {es = (n₁' , n₂') ∷ es} e∈es⇒e∈edges (here refl) with n₁' ≟ n₁' | n₂' ≟ n₂' ... | yes refl | yes refl = here refl ... | no n₁'≢n₁' | _ = ⊥-elim (n₁'≢n₁' refl) ... | _ | no n₂'≢n₂' = ⊥-elim (n₂'≢n₂' refl) e∈seedWithEdges {n₁} {n₂} {es = (n₁' , n₂') ∷ es} e∈es⇒e∈edges (there n₁n₂∈es) with n₁' ≟ n₁ | n₂' ≟ n₂ ... | yes refl | yes refl = there (e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es) ... | no _ | no _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es ... | no _ | yes _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es ... | yes refl | no _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es adj¹ : Adjacency adj¹ = seedWithEdges edges (λ x → x) edge∈adj¹ : ∀ {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) → (last n₁n₂∈edges) ∈ˡ adj¹ n₁ n₂ edge∈adj¹ = e∈seedWithEdges (λ x → x) throughAll : List Node → Adjacency throughAll = foldr through adj¹ throughAll-adj₁ : ∀ {n₁ n₂ p} ns → p ∈ˡ adj¹ n₁ n₂ → p ∈ˡ throughAll ns n₁ n₂ throughAll-adj₁ [] p∈adj¹ = p∈adj¹ throughAll-adj₁ (n ∷ ns) p∈adj¹ = through-monotonic (throughAll ns) n (throughAll-adj₁ ns p∈adj¹) -- paths-throughAll : ∀ {n₁ n₂ : Node} (p : Path n₁ n₂) (ns : List Node) → All (λ n → n ∈ˡ ns) (interior p) → p ∈ˡ throughAll ns n₁ n₂ -- paths-throughAll (last n₁n₂∈edges) ns _ = throughAll-adj₁ ns (edge∈adj¹ n₁n₂∈edges) adj : Adjacency adj = throughAll (proj₁ nodes) NoCycles : Set NoCycles = ∀ (n : Node) → adj n n ≡ []