module Lattice where import Data.Nat.Properties as NatProps open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym) open import Relation.Binary.Definitions open import Relation.Nullary using (Dec; ¬_) open import Data.Nat as Nat using (ℕ; _≤_) open import Data.Product using (_×_; Σ; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Agda.Primitive using (lsuc; Level) open import Chain using (Chain; Height) record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where field ≈-refl : {a : A} → a ≈ a ≈-sym : {a b : A} → a ≈ b → b ≈ a ≈-trans : {a b c : A} → a ≈ b → b ≈ c → a ≈ c record IsDecidable {a} (A : Set a) (R : A → A → Set a) : Set a where field R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂) record IsSemilattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) : Set a where field ≈-equiv : IsEquivalence A _≈_ ⊔-assoc : (x y z : A) → ((x ⊔ y) ⊔ z) ≈ (x ⊔ (y ⊔ z)) ⊔-comm : (x y : A) → (x ⊔ y) ≈ (y ⊔ x) ⊔-idemp : (x : A) → (x ⊔ x) ≈ x open IsEquivalence ≈-equiv public record IsLattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set a where field joinSemilattice : IsSemilattice A _≈_ _⊔_ meetSemilattice : IsSemilattice A _≈_ _⊓_ absorb-⊔-⊓ : (x y : A) → (x ⊔ (x ⊓ y)) ≈ x absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x open IsSemilattice joinSemilattice public open IsSemilattice meetSemilattice public hiding (≈-equiv; ≈-refl; ≈-sym; ≈-trans) renaming ( ⊔-assoc to ⊓-assoc ; ⊔-comm to ⊓-comm ; ⊔-idemp to ⊓-idemp ) record IsFiniteHeightLattice {a} (A : Set a) (h : ℕ) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set (lsuc a) where _≼_ : A → A → Set a a ≼ b = Σ A (λ c → (a ⊔ c) ≈ b) _≺_ : A → A → Set a a ≺ b = (a ≼ b) × (¬ a ≈ b) field isLattice : IsLattice A _≈_ _⊔_ _⊓_ fixedHeight : Height _≺_ h open IsLattice isLattice public record Semilattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A isSemilattice : IsSemilattice A _≈_ _⊔_ open IsSemilattice isSemilattice public record Lattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A _⊓_ : A → A → A isLattice : IsLattice A _≈_ _⊔_ _⊓_ open IsLattice isLattice public module IsEquivalenceInstances where module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (eA : IsEquivalence A _≈₁_) (eB : IsEquivalence B _≈₂_) where infix 4 _≈_ _≈_ : A × B → A × B → Set a (a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂) ProdEquivalence : IsEquivalence (A × B) _≈_ ProdEquivalence = record { ≈-refl = λ {p} → ( IsEquivalence.≈-refl eA , IsEquivalence.≈-refl eB ) ; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) → ( IsEquivalence.≈-sym eA a₁≈a₂ , IsEquivalence.≈-sym eB b₁≈b₂ ) ; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) → ( IsEquivalence.≈-trans eA a₁≈a₂ a₂≈a₃ , IsEquivalence.≈-trans eB b₁≈b₂ b₂≈b₃ ) } module ForMap {a b} (A : Set a) (B : Set b) (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set b) (eB : IsEquivalence B _≈₂_) where open import Map A B ≡-dec-A using (Map; lift; subset) open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map open IsEquivalence eB renaming ( ≈-refl to ≈₂-refl ; ≈-sym to ≈₂-sym ; ≈-trans to ≈₂-trans ) _≈_ : Map → Map → Set (Agda.Primitive._⊔_ a b) _≈_ = lift _≈₂_ _⊆_ : Map → Map → Set (Agda.Primitive._⊔_ a b) _⊆_ = subset _≈₂_ private ⊆-refl : (m : Map) → m ⊆ m ⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m)) ⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃ ⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = let (v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ (v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂ in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) LiftEquivalence : IsEquivalence Map _≈_ LiftEquivalence = record { ≈-refl = λ {m} → (⊆-refl m , ⊆-refl m) ; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) → (m₂⊆m₁ , m₁⊆m₂) ; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) → ( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃ , ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁ ) } module IsSemilatticeInstances where module ForNat where open Nat open NatProps open Eq NatIsMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_ NatIsMaxSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idem } NatIsMinSemilattice : IsSemilattice ℕ _≡_ _⊓_ NatIsMinSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ⊔-assoc = ⊓-assoc ; ⊔-comm = ⊓-comm ; ⊔-idemp = ⊓-idem } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (sA : IsSemilattice A _≈₁_ _⊔₁_) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open Eq open Data.Product module ProdEquiv = IsEquivalenceInstances.ForProd _≈₁_ _≈₂_ (IsSemilattice.≈-equiv sA) (IsSemilattice.≈-equiv sB) open ProdEquiv using (_≈_) public infixl 20 _⊔_ _⊔_ : A × B → A × B → A × B (a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂) ProdIsSemilattice : IsSemilattice (A × B) _≈_ _⊔_ ProdIsSemilattice = record { ≈-equiv = ProdEquiv.ProdEquivalence ; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) → ( IsSemilattice.⊔-assoc sA a₁ a₂ a₃ , IsSemilattice.⊔-assoc sB b₁ b₂ b₃ ) ; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂) → ( IsSemilattice.⊔-comm sA a₁ a₂ , IsSemilattice.⊔-comm sB b₁ b₂ ) ; ⊔-idemp = λ (a , b) → ( IsSemilattice.⊔-idemp sA a , IsSemilattice.⊔-idemp sB b ) } module ForMap {a} {A B : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set a) (_⊔₂_ : B → B → B) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open import Map A B ≡-dec-A open IsSemilattice sB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym ; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp ) module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB) open MapEquiv using (_≈_) public infixl 20 _⊔_ infixl 20 _⊓_ _⊔_ : Map → Map → Map m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂ _⊓_ : Map → Map → Map m₁ ⊓ m₂ = intersect _⊔₂_ m₁ m₂ MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_ MapIsUnionSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ⊔-assoc = union-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = union-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = union-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } MapIsIntersectSemilattice : IsSemilattice Map _≈_ _⊓_ MapIsIntersectSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ⊔-assoc = intersect-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = intersect-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = intersect-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } module IsLatticeInstances where module ForNat where open Nat open NatProps open Eq open IsSemilatticeInstances.ForNat open Data.Product private max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z max-bound₁ {x} {y} {z} x⊔y≡z rewrite sym x⊔y≡z rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl) min-bound₁ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ x min-bound₁ {x} {y} {z} x⊓y≡z rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl) minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x)) where x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl) -- >:( helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y) helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y where x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl) -- >:( helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x NatIsLattice : IsLattice ℕ _≡_ _⊔_ _⊓_ NatIsLattice = record { joinSemilattice = NatIsMaxSemilattice ; meetSemilattice = NatIsMinSemilattice ; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y} ; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y} } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where module ProdJoin = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ (IsLattice.joinSemilattice lA) (IsLattice.joinSemilattice lB) open ProdJoin using (_⊔_; _≈_) public module ProdMeet = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊓₁_ _⊓₂_ (IsLattice.meetSemilattice lA) (IsLattice.meetSemilattice lB) open ProdMeet using () renaming (_⊔_ to _⊓_) public ProdIsLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_ ProdIsLattice = record { joinSemilattice = ProdJoin.ProdIsSemilattice ; meetSemilattice = ProdMeet.ProdIsSemilattice ; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊔-⊓ lA a₁ a₂ , IsLattice.absorb-⊔-⊓ lB b₁ b₂ ) ; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊓-⊔ lA a₁ a₂ , IsLattice.absorb-⊓-⊔ lB b₁ b₂ ) } module ForMap {a} {A B : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set a) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where open import Map A B ≡-dec-A open IsLattice lB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym ; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp ; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂ ) module MapJoin = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊔₂_ (IsLattice.joinSemilattice lB) open MapJoin using (_⊔_; _≈_) public module MapMeet = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊓₂_ (IsLattice.meetSemilattice lB) open MapMeet using (_⊓_) public MapIsLattice : IsLattice Map _≈_ _⊔_ _⊓_ MapIsLattice = record { joinSemilattice = MapJoin.MapIsUnionSemilattice ; meetSemilattice = MapMeet.MapIsIntersectSemilattice ; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂ ; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂ }