-- Because iterated products currently require both A and B to be of the same -- universe, and the FiniteMap is written in a universe-polymorphic way, -- specialize the FiniteMap module with Set-typed types only. open import Lattice open import Equivalence open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Relation.Binary.Definitions using (Decidable) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) open import Function.Definitions using (Inverseˡ; Inverseʳ) module Lattice.FiniteValueMap (A : Set) (B : Set) (_≈₂_ : B → B → Set) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (≈-dec-A : Decidable (_≡_ {_} {A})) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where open import Data.List using (List; length; []; _∷_) open import Utils using (Unique; push; empty) open import Data.Product using (_,_) open import Data.List.Properties using (∷-injectiveʳ) open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public module IterProdIsomorphism where open import Data.Unit using (⊤; tt) open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ) open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd) from : ∀ {ks : List A} → FiniteMap ks → IterProd (length ks) from {[]} (([] , _) , _) = tt from {k ∷ ks'} (((k' , v) ∷ kvs' , push _ uks') , refl) = (v , from ((kvs' , uks'), refl)) to : ∀ {ks : List A} → Unique ks → IterProd (length ks) → FiniteMap ks to {[]} _ ⊤ = (([] , empty) , refl) to {k ∷ ks'} (push k≢ks' uks') (v , rest) with to uks' rest ... | ((kvs' , ukvs') , refl) = (((k , v) ∷ kvs' , push k≢ks' ukvs') , refl) private _≈ᵐ_ : ∀ {ks : List A} → FiniteMap ks → FiniteMap ks → Set _≈ᵐ_ {ks} = _≈_ ks _≈ⁱᵖ_ : ∀ {ks : List A} → IterProd (length ks) → IterProd (length ks) → Set _≈ⁱᵖ_ {ks} = IP._≈_ (length ks) from-to-inverseˡ : ∀ {ks : List A} (uks : Unique ks) → Inverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- from (to x) = x from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0) from-to-inverseˡ {k ∷ ks'} (push k≢ks' uks') (v , rest) with ((kvs' , ukvs') , refl) ← to uks' rest in p rewrite sym p = (IsLattice.≈-refl lB , from-to-inverseˡ {ks'} uks' rest) -- the rewrite here is needed because the IH is in terms of `to uks' rest`, -- but we end up with the 'unpacked' form (kvs', ...). So, put it back -- in the 'packed' form after we've performed enough inspection -- to know we take the cons branch of `to`.