open import Language hiding (_[_]) open import Lattice module Analysis.Forward {L : Set} {h} {_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L} (isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_) (≈ˡ-dec : IsDecidable _≈ˡ_) where open import Data.Empty using (⊥-elim) open import Data.String using (String) renaming (_≟_ to _≟ˢ_) open import Data.Nat using (suc) open import Data.Product using (_×_; proj₁; proj₂; _,_) open import Data.Sum using (inj₁; inj₂) open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Data.List.Relation.Unary.Any as Any using () open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans; subst) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Unit using (⊤) open import Function using (_∘_; flip) import Chain open import Utils using (Pairwise; _⇒_; _∨_) import Lattice.FiniteValueMap open IsFiniteHeightLattice isFiniteHeightLatticeˡ using () renaming ( isLattice to isLatticeˡ ; fixedHeight to fixedHeightˡ ; _≼_ to _≼ˡ_ ; ≈-sym to ≈ˡ-sym ) module WithProg (prog : Program) where open Program prog -- The variable -> abstract value (e.g. sign) map is a finite value-map -- with keys strings. Use a bundle to avoid explicitly specifying operators. module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars open VariableValuesFiniteMap using () renaming ( FiniteMap to VariableValues ; isLattice to isLatticeᵛ ; _≈_ to _≈ᵛ_ ; _⊔_ to _⊔ᵛ_ ; _≼_ to _≼ᵛ_ ; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec ; _∈_ to _∈ᵛ_ ; _∈k_ to _∈kᵛ_ ; _updating_via_ to _updatingᵛ_via_ ; locate to locateᵛ ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ ; ∈k-dec to ∈k-decᵛ ; all-equal-keys to all-equal-keysᵛ ) public open IsLattice isLatticeᵛ using () renaming ( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ ; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ ; ⊔-idemp to ⊔ᵛ-idemp ) open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ using () renaming ( Provenance-union to Provenance-unionᵐ ) open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵛ ; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms ) ≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ ⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ -- Finally, the map we care about is (state -> (variables -> value)). Bring that in. module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states open StateVariablesFiniteMap using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂) renaming ( FiniteMap to StateVariables ; isLattice to isLatticeᵐ ; _≈_ to _≈ᵐ_ ; _∈_ to _∈ᵐ_ ; _∈k_ to _∈kᵐ_ ; locate to locateᵐ ; _≼_ to _≼ᵐ_ ; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ ) public open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵐ ) open IsFiniteHeightLattice isFiniteHeightLatticeᵐ using () renaming ( ≈-sym to ≈ᵐ-sym ) ≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ -- We now have our (state -> (variables -> value)) map. -- Define a couple of helpers to retrieve values from it. Specifically, -- since the State type is as specific as possible, it's always possible to -- retrieve the variable values at each state. states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s variablesAt : State → StateVariables → VariableValues variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv)) variablesAt-∈ : ∀ (s : State) (sv : StateVariables) → (s , variablesAt s sv) ∈ᵐ sv variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv)) variablesAt-≈ : ∀ s sv₁ sv₂ → sv₁ ≈ᵐ sv₂ → variablesAt s sv₁ ≈ᵛ variablesAt s sv₂ variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ = m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂ (states-in-Map s sv₁) (states-in-Map s sv₂) -- build up the 'join' function, which follows from Exercise 4.26's -- -- L₁ → (A → L₂) -- -- Construction, with L₁ = (A → L₂), and f = id joinForKey : State → StateVariables → VariableValues joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ]) -- The per-key join is made up of map key accesses (which are monotonic) -- and folds using the join operation (also monotonic) joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k) joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ = foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ (m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂) (⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ -- The name f' comes from the formulation of Exercise 4.26. open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states renaming ( f' to joinAll ; f'-Monotonic to joinAll-Mono ; f'-k∈ks-≡ to joinAll-k∈ks-≡ ) variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) → variablesAt s (joinAll sv) ≡ joinForKey s sv variablesAt-joinAll s sv with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) = joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv -- With 'join' in hand, we need to perform abstract evaluation. module WithEvaluator (eval : Expr → VariableValues → L) (eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where -- For a particular evaluation function, we need to perform an evaluation -- for an assignment, and update the corresponding key. Use Exercise 4.26's -- generalized update to set the single key's value. private module _ (k : String) (e : Expr) where open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ []) renaming ( f' to updateVariablesFromExpression ; f'-Monotonic to updateVariablesFromExpression-Mono ; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡ ; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward ) public -- The per-state update function makes use of the single-key setter, -- updateVariablesFromExpression, for the case where the statement -- is an assignment. -- -- This per-state function adjusts the variables in that state, -- also monotonically; we derive the for-each-state update from -- the Exercise 4.26 again. updateVariablesFromStmt : BasicStmt → VariableValues → VariableValues updateVariablesFromStmt (k ← e) vs = updateVariablesFromExpression k e vs updateVariablesFromStmt noop vs = vs updateVariablesFromStmt-Monoʳ : ∀ (bs : BasicStmt) → Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs) updateVariablesFromStmt-Monoʳ (k ← e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂ updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂ updateVariablesForState : State → StateVariables → VariableValues updateVariablesForState s sv = foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s) updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s) updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ = let bss = code s (vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁) (vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂) vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂ in foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss (flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ vs₁≼vs₂ open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states renaming ( f' to updateAll ; f'-Monotonic to updateAll-Mono ; f'-k∈ks-≡ to updateAll-k∈ks-≡ ) -- Finally, the whole analysis consists of getting the 'join' -- of all incoming states, then applying the per-state evaluation -- function. This is just a composition, and is trivially monotonic. analyze : StateVariables → StateVariables analyze = updateAll ∘ joinAll analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂) -- The fixed point of the 'analyze' function is our final goal. open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂) using () renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result) public variablesAt-updateAll : ∀ (s : State) (sv : StateVariables) → variablesAt s (updateAll sv) ≡ updateVariablesForState s sv variablesAt-updateAll s sv with (vs , s,vs∈usv) ← locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) = updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where open LatticeInterpretation latticeInterpretationˡ using () renaming ( ⟦_⟧ to ⟦_⟧ˡ ; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ ; ⟦⟧-⊔-∨ to ⟦⟧ˡ-⊔ˡ-∨ ) ⟦_⟧ᵛ : VariableValues → Env → Set ⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v ⟦⊥ᵛ⟧ᵛ∅ : ⟦ ⊥ᵛ ⟧ᵛ [] ⟦⊥ᵛ⟧ᵛ∅ _ () ⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ ⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _} (m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ = let (l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂ ⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ in ⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v ⟦⟧ᵛ-⊔ᵛ-∨ : ∀ {vs₁ vs₂ : VariableValues} → (⟦ vs₁ ⟧ᵛ ∨ ⟦ vs₂ ⟧ᵛ) ⇒ ⟦ vs₁ ⊔ᵛ vs₂ ⟧ᵛ ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁} {vs₂} ρ ⟦vs₁⟧ρ∨⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂))) ← Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂ with ⟦vs₁⟧ρ∨⟦vs₂⟧ρ ... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ)) ... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ)) ⟦⟧ᵛ-foldr : ∀ {vs : VariableValues} {vss : List VariableValues} {ρ : Env} → ⟦ vs ⟧ᵛ ρ → vs ∈ˡ vss → ⟦ foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ ⟦⟧ᵛ-foldr {vs} {vs ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) = ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ) ⟦⟧ᵛ-foldr {vs} {vs' ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') = ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss')) InterpretationValid : Set InterpretationValid = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v module WithValidity (interpretationValidˡ : InterpretationValid) where updateVariablesFromStmt-matches : ∀ {bs vs ρ₁ ρ₂} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂ updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ₁ = ⟦vs⟧ρ₁ updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ₁ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂ with k ≟ˢ k' | k',v'∈ρ₂ ... | yes refl | here _ v _ rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' = interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ₁ ... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k')) ... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl) ... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ = let k'∉[k] = (λ { (Any.here refl) → k≢k' refl }) k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs' in ⟦vs⟧ρ₁ k',l∈vs k',v'∈ρ₁ updateVariablesFromStmt-fold-matches : ∀ {bss vs ρ₁ ρ₂} → ρ₁ , bss ⇒ᵇˢ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂ updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ updateVariablesFromStmt-fold-matches {bs ∷ bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ∷ ρ,bss'⇒ρ₂) ⟦vs⟧ρ₁ = updateVariablesFromStmt-fold-matches {bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂ (updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ₁) updateVariablesForState-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ updateVariablesForState s sv ⟧ᵛ ρ₂ updateVariablesForState-matches = updateVariablesFromStmt-fold-matches updateAll-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ variablesAt s (updateAll sv) ⟧ᵛ ρ₂ updateAll-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁ rewrite variablesAt-updateAll s sv = updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁ stepTrace : ∀ {s₁ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s₁ result ⟧ᵛ ρ₂ stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂ = let -- I'd use rewrite, but Agda gets a memory overflow (?!). ⟦joinAll-result⟧ρ₁ = subst (λ vs → ⟦ vs ⟧ᵛ ρ₁) (sym (variablesAt-joinAll s₁ result)) ⟦joinForKey-s₁⟧ρ₁ ⟦analyze-result⟧ρ₂ = updateAll-matches {sv = joinAll result} ρ₁,bss⇒ρ₂ ⟦joinAll-result⟧ρ₁ analyze-result≈result = ≈ᵐ-sym {result} {updateAll (joinAll result)} result≈analyze-result analyze-s₁≈s₁ = variablesAt-≈ s₁ (updateAll (joinAll result)) result (analyze-result≈result) in ⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ₂ walkTrace : ∀ {s₁ s₂ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → Trace {graph} s₁ s₂ ρ₁ ρ₂ → ⟦ variablesAt s₂ result ⟧ᵛ ρ₂ walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-single ρ₁,bss⇒ρ₂) = stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂ walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) = let ⟦result-s₁⟧ρ = stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ s₁∈incomingStates = []-∈ result (edge⇒incoming s₁→s₂) (variablesAt-∈ s₁ result) ⟦joinForKey-s⟧ρ = ⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates in walkTrace ⟦joinForKey-s⟧ρ tr joinForKey-initialState-⊥ᵛ : joinForKey initialState result ≡ ⊥ᵛ joinForKey-initialState-⊥ᵛ = cong (λ ins → foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅ ⟦joinAll-initialState⟧ᵛ∅ : ⟦ joinForKey initialState result ⟧ᵛ [] ⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs → ⟦ vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅ analyze-correct : ∀ {ρ : Env} → [] , rootStmt ⇒ˢ ρ → ⟦ variablesAt finalState result ⟧ᵛ ρ analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)