module Language.Graphs where open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_) open import Data.Fin as Fin using (Fin; suc; zero) open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.List as List using (List; []; _∷_) open import Data.List.Membership.Propositional as ListMem using () open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺; ∈-filter⁻) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any as RelAny using () open import Data.Nat as Nat using (ℕ; suc) open import Data.Nat.Properties using (+-assoc; +-comm) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Product.Properties as ProdProp using () open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_) open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans) open import Relation.Nullary using (¬_) open import Lattice open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs; ∈-cartesianProduct) record Graph : Set where constructor MkGraph field size : ℕ Index : Set Index = Fin size Edge : Set Edge = Index × Index field nodes : Vec (List BasicStmt) size edges : List Edge inputs : List Index outputs : List Index _↑ˡ_ : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m) _↑ʳ_ : ∀ {m} n → (Fin m × Fin m) → Fin (n Nat.+ m) × Fin (n Nat.+ m) _↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂) _↑ˡⁱ_ : ∀ {n} → List (Fin n) → ∀ m → List (Fin (n Nat.+ m)) _↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l _↑ʳⁱ_ : ∀ {m} n → List (Fin m) → List (Fin (n Nat.+ m)) _↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l _↑ˡᵉ_ : ∀ {n} → List (Fin n × Fin n) → ∀ m → List (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ˡᵉ_ l m = List.map (_↑ˡ m) l _↑ʳᵉ_ : ∀ {m} n → List (Fin m × Fin m) → List (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ʳᵉ_ n l = List.map (n ↑ʳ_) l infixr 5 _∙_ _∙_ : Graph → Graph → Graph _∙_ g₁ g₂ = record { size = Graph.size g₁ Nat.+ Graph.size g₂ ; nodes = Graph.nodes g₁ ++ Graph.nodes g₂ ; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂) ; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂) ; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳⁱ Graph.outputs g₂) } infixr 5 _↦_ _↦_ : Graph → Graph → Graph _↦_ g₁ g₂ = record { size = Graph.size g₁ Nat.+ Graph.size g₂ ; nodes = Graph.nodes g₁ ++ Graph.nodes g₂ ; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++ (List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)) ; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂ ; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂ } loop : Graph → Graph loop g = record { size = 2 Nat.+ Graph.size g ; nodes = [] ∷ [] ∷ Graph.nodes g ; edges = (2 ↑ʳᵉ Graph.edges g) List.++ List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g) List.++ List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g) List.++ ((suc zero , zero) ∷ (zero , suc zero) ∷ []) ; inputs = zero ∷ [] ; outputs = (suc zero) ∷ [] } infixr 5 _skipto_ _skipto_ : Graph → Graph → Graph _skipto_ g₁ g₂ = record (g₁ ∙ g₂) { edges = Graph.edges (g₁ ∙ g₂) List.++ (List.cartesianProduct (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)) ; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂ ; outputs = Graph.size g₁ ↑ʳⁱ Graph.inputs g₂ } _[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt _[_] g idx = lookup (Graph.nodes g) idx singleton : List BasicStmt → Graph singleton bss = record { size = 1 ; nodes = bss ∷ [] ; edges = [] ; inputs = zero ∷ [] ; outputs = zero ∷ [] } wrap : Graph → Graph wrap g = singleton [] ↦ g ↦ singleton [] buildCfg : Stmt → Graph buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ []) buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂ buildCfg (if _ then s₁ else s₂) = singleton [] ↦ (buildCfg s₁ ∙ buildCfg s₂) ↦ singleton [] buildCfg (while _ repeat s) = loop (buildCfg s) private z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (zero ≡ suc f) z≢sf f () z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (List.map suc fs) z≢mapsfs [] = [] z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs' finValues : ∀ (n : ℕ) → Σ (List (Fin n)) Unique finValues 0 = ([] , Utils.empty) finValues (suc n') = let (inds' , unids') = finValues n' in ( zero ∷ List.map suc inds' , push (z≢mapsfs inds') (Unique-map suc suc-injective unids') ) finValues-complete : ∀ (n : ℕ) (f : Fin n) → f ListMem.∈ (proj₁ (finValues n)) finValues-complete (suc n') zero = RelAny.here refl finValues-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (finValues-complete n' f')) module _ (g : Graph) where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size g}) (FinProp._≟_ {Graph.size g})) using (_∈?_) indices : List (Graph.Index g) indices = proj₁ (finValues (Graph.size g)) indices-complete : ∀ (idx : (Graph.Index g)) → idx ListMem.∈ indices indices-complete = finValues-complete (Graph.size g) indices-Unique : Unique indices indices-Unique = proj₂ (finValues (Graph.size g)) predecessors : (Graph.Index g) → List (Graph.Index g) predecessors idx = List.filter (λ idx' → (idx' , idx) ∈? (Graph.edges g)) indices edge⇒predecessor : ∀ {idx₁ idx₂ : Graph.Index g} → (idx₁ , idx₂) ListMem.∈ (Graph.edges g) → idx₁ ListMem.∈ (predecessors idx₂) edge⇒predecessor {idx₁} {idx₂} idx₁,idx₂∈es = ∈-filter⁺ (λ idx' → (idx' , idx₂) ∈? (Graph.edges g)) (indices-complete idx₁) idx₁,idx₂∈es predecessor⇒edge : ∀ {idx₁ idx₂ : Graph.Index g} → idx₁ ListMem.∈ (predecessors idx₂) → (idx₁ , idx₂) ListMem.∈ (Graph.edges g) predecessor⇒edge {idx₁} {idx₂} idx₁∈pred = proj₂ (∈-filter⁻ (λ idx' → (idx' , idx₂) ∈? (Graph.edges g)) {v = idx₁} {xs = indices} idx₁∈pred )