module Language.Properties where open import Language.Base open import Language.Semantics open import Language.Graphs open import Language.Traces open import Data.Fin as Fin using (suc; zero) open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.List as List using (List; _∷_; []) open import Data.List.Properties using (filter-none) open import Data.List.Relation.Unary.Any using (here; there) open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate) open import Data.List.Membership.Propositional as ListMem using () open import Data.List.Membership.Propositional.Properties as ListMemProp using () open import Data.Nat as Nat using () open import Data.Product using (Σ; _,_; _×_; proj₂) open import Data.Product.Properties as ProdProp using () open import Data.Sum using (inj₁; inj₂) open import Data.Vec as Vec using (_∷_) open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong) open import Relation.Nullary using (¬_) open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈) -- All of the below helpers are to reason about what edges aren't included -- when combinings graphs. The currenty most important use for this is proving -- that the entry node has no incoming edges. -- -- -------------- Begin ugly code to make this work ---------------- ↑-≢ : ∀ {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) → ¬ (f₁ Fin.↑ˡ m) ≡ (n Fin.↑ʳ f₂) ↑-≢ zero f₂ () ↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂) idx→f∉↑ʳᵉ : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂) idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) ∷ es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂) idx→f∉↑ʳᵉ idx f (_ ∷ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂' idx→f∉pair : ∀ {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂)) idx→f∉pair idx idx' f [] () idx→f∉pair idx idx' f (input ∷ inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input) idx→f∉pair idx idx' f (_ ∷ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂' idx→f∉cart : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂)) idx→f∉cart idx f [] inputs₂ () idx→f∉cart {n} {m} idx f (output ∷ outputs₁') inputs₂ idx,f∈pair++cart with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart ... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair ... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart help : let g₁ = singleton [] in ∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ ↦ g₂)) → ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++ (List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))) help g₂ idx₁ idx idx,idx₁∈g with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g ... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂ ... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart helpAll : let g₁ = singleton [] in ∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) → All (λ idx → ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++ (List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ ↦ g₂)) helpAll g₂ idx₁ = tabulate (λ {idx} _ → help g₂ idx₁ idx) module _ (g : Graph) where wrap-preds-∅ : (idx : Graph.Index (wrap g)) → idx ListMem.∈ Graph.inputs (wrap g) → predecessors (wrap g) idx ≡ [] wrap-preds-∅ zero (here refl) = filter-none (λ idx' → (idx' , zero) ∈? (Graph.edges (wrap g))) (helpAll (g ↦ singleton []) zero) where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_) -- -------------- End ugly code to make this work ---------------- module _ (g : Graph) where wrap-input : Σ (Graph.Index (wrap g)) (λ idx → Graph.inputs (wrap g) ≡ idx ∷ []) wrap-input = (_ , refl) wrap-output : Σ (Graph.Index (wrap g)) (λ idx → Graph.outputs (wrap g) ≡ idx ∷ []) wrap-output = (_ , refl) Trace-∙ˡ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} → Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ → Trace {g₁ ∙ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂ Trace-∙ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂) rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-single ρ₁⇒ρ₂ Trace-∙ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr') rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx)) (Trace-∙ˡ tr') Trace-∙ʳ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env} → Trace {g₂} idx₁ idx₂ ρ₁ ρ₂ → Trace {g₁ ∙ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂ Trace-∙ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂) rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-single ρ₁⇒ρ₂ Trace-∙ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr') rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ _ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx)) (Trace-∙ʳ tr') EndToEndTrace-∙ˡ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env} → EndToEndTrace {g₁} ρ₁ ρ₂ → EndToEndTrace {g₁ ∙ g₂} ρ₁ ρ₂ EndToEndTrace-∙ˡ {g₁} {g₂} etr = record { idx₁ = EndToEndTrace.idx₁ etr Fin.↑ˡ Graph.size g₂ ; idx₁∈inputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₁∈inputs etr)) ; idx₂ = EndToEndTrace.idx₂ etr Fin.↑ˡ Graph.size g₂ ; idx₂∈outputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₂∈outputs etr)) ; trace = Trace-∙ˡ (EndToEndTrace.trace etr) } EndToEndTrace-∙ʳ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env} → EndToEndTrace {g₂} ρ₁ ρ₂ → EndToEndTrace {g₁ ∙ g₂} ρ₁ ρ₂ EndToEndTrace-∙ʳ {g₁} {g₂} etr = record { idx₁ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₁ etr ; idx₁∈inputs = ListMemProp.∈-++⁺ʳ (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) ((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr))) ; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr ; idx₂∈outputs = ListMemProp.∈-++⁺ʳ (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) ((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr))) ; trace = Trace-∙ʳ (EndToEndTrace.trace etr) } Trace-↦ˡ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} → Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ → Trace {g₁ ↦ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂ Trace-↦ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂) rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-single ρ₁⇒ρ₂ Trace-↦ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr') rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx)) (Trace-↦ˡ tr') Trace-↦ʳ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env} → Trace {g₂} idx₁ idx₂ ρ₁ ρ₂ → Trace {g₁ ↦ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂ Trace-↦ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂) rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-single ρ₁⇒ρ₂ Trace-↦ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr') rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) = Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx))) (Trace-↦ʳ {g₁} {g₂} tr') loop-edge-groups : ∀ (g : Graph) → List (List (Graph.Edge (loop g))) loop-edge-groups g = (2 ↑ʳᵉ Graph.edges g) ∷ (List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g)) ∷ (List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g)) ∷ ((suc zero , zero) ∷ (zero , suc zero) ∷ []) ∷ [] loop-edge-help : ∀ (g : Graph) {l : List (Graph.Edge (loop g))} {e : Graph.Edge (loop g)} → e ListMem.∈ l → l ListMem.∈ loop-edge-groups g → e ListMem.∈ Graph.edges (loop g) loop-edge-help g e∈l l∈ess = concat-∈ e∈l l∈ess Trace-loop : ∀ {g : Graph} {idx₁ idx₂ : Graph.Index g} {ρ₁ ρ₂ : Env} → Trace {g} idx₁ idx₂ ρ₁ ρ₂ → Trace {loop g} (2 Fin.↑ʳ idx₁) (2 Fin.↑ʳ idx₂) ρ₁ ρ₂ Trace-loop {g} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂) rewrite sym (lookup-++ʳ (List.[] ∷ List.[] ∷ Vec.[]) (Graph.nodes g) idx₁) = Trace-single ρ₁⇒ρ₂ Trace-loop {g} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr') rewrite sym (lookup-++ʳ (List.[] ∷ List.[] ∷ Vec.[]) (Graph.nodes g) idx₁) = Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (2 ↑ʳ_) idx₁→idx)) (Trace-loop {g} tr') EndToEndTrace-loop : ∀ {g : Graph} {ρ₁ ρ₂ : Env} → EndToEndTrace {g} ρ₁ ρ₂ → EndToEndTrace {loop g} ρ₁ ρ₂ EndToEndTrace-loop {g} etr = let zero→idx₁' = x∈xs⇒fx∈fxs (zero ,_) (x∈xs⇒fx∈fxs (2 Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr)) zero→idx₁ = loop-edge-help g zero→idx₁' (there (here refl)) idx₂→suc' = x∈xs⇒fx∈fxs (_, suc zero) (x∈xs⇒fx∈fxs (2 Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr)) idx₂→suc = loop-edge-help g idx₂→suc' (there (there (here refl))) in record { idx₁ = zero ; idx₁∈inputs = here refl ; idx₂ = suc zero ; idx₂∈outputs = here refl ; trace = Trace-single [] ++⟨ zero→idx₁ ⟩ Trace-loop {g} (EndToEndTrace.trace etr) ++⟨ idx₂→suc ⟩ Trace-single [] } EndToEndTrace-loop² : ∀ {g : Graph} {ρ₁ ρ₂ ρ₃ : Env} → EndToEndTrace {loop g} ρ₁ ρ₂ → EndToEndTrace {loop g} ρ₂ ρ₃ → EndToEndTrace {loop g} ρ₁ ρ₃ EndToEndTrace-loop² {g} (MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₁) (MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₂) = let suc→zero = loop-edge-help g (here refl) (there (there (there (here refl)))) in record { idx₁ = zero ; idx₁∈inputs = here refl ; idx₂ = suc zero ; idx₂∈outputs = here refl ; trace = tr₁ ++⟨ suc→zero ⟩ tr₂ } EndToEndTrace-loop⁰ : ∀ {g : Graph} {ρ : Env} → EndToEndTrace {loop g} ρ ρ EndToEndTrace-loop⁰ {g} {ρ} = let zero→suc = loop-edge-help g (there (here refl)) (there (there (there (here refl)))) in record { idx₁ = zero ; idx₁∈inputs = here refl ; idx₂ = suc zero ; idx₂∈outputs = here refl ; trace = Trace-single [] ++⟨ zero→suc ⟩ Trace-single [] } infixr 5 _++_ _++_ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ ρ₃ : Env} → EndToEndTrace {g₁} ρ₁ ρ₂ → EndToEndTrace {g₂} ρ₂ ρ₃ → EndToEndTrace {g₁ ↦ g₂} ρ₁ ρ₃ _++_ {g₁} {g₂} etr₁ etr₂ = record { idx₁ = EndToEndTrace.idx₁ etr₁ Fin.↑ˡ Graph.size g₂ ; idx₁∈inputs = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₁∈inputs etr₁) ; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr₂ ; idx₂∈outputs = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr₂) ; trace = let o∈tr₁ = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₂∈outputs etr₁) i∈tr₂ = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr₂) oi∈es = ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) (ListMemProp.∈-++⁺ʳ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂) (∈-cartesianProduct o∈tr₁ i∈tr₂)) in (Trace-↦ˡ {g₁} {g₂} (EndToEndTrace.trace etr₁)) ++⟨ oi∈es ⟩ (Trace-↦ʳ {g₁} {g₂} (EndToEndTrace.trace etr₂)) } EndToEndTrace-singleton : ∀ {bss : List BasicStmt} {ρ₁ ρ₂ : Env} → ρ₁ , bss ⇒ᵇˢ ρ₂ → EndToEndTrace {singleton bss} ρ₁ ρ₂ EndToEndTrace-singleton ρ₁⇒ρ₂ = record { idx₁ = zero ; idx₁∈inputs = here refl ; idx₂ = zero ; idx₂∈outputs = here refl ; trace = Trace-single ρ₁⇒ρ₂ } EndToEndTrace-singleton[] : ∀ (ρ : Env) → EndToEndTrace {singleton []} ρ ρ EndToEndTrace-singleton[] env = EndToEndTrace-singleton [] EndToEndTrace-wrap : ∀ {g : Graph} {ρ₁ ρ₂ : Env} → EndToEndTrace {g} ρ₁ ρ₂ → EndToEndTrace {wrap g} ρ₁ ρ₂ EndToEndTrace-wrap {g} {ρ₁} {ρ₂} etr = EndToEndTrace-singleton[] ρ₁ ++ etr ++ EndToEndTrace-singleton[] ρ₂ buildCfg-sufficient : ∀ {s : Stmt} {ρ₁ ρ₂ : Env} → ρ₁ , s ⇒ˢ ρ₂ → EndToEndTrace {buildCfg s} ρ₁ ρ₂ buildCfg-sufficient (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ₂) = EndToEndTrace-singleton (ρ₁,bs⇒ρ₂ ∷ []) buildCfg-sufficient (⇒ˢ-then ρ₁ ρ₂ ρ₃ s₁ s₂ ρ₁,s₁⇒ρ₂ ρ₂,s₂⇒ρ₃) = buildCfg-sufficient ρ₁,s₁⇒ρ₂ ++ buildCfg-sufficient ρ₂,s₂⇒ρ₃ buildCfg-sufficient (⇒ˢ-if-true ρ₁ ρ₂ _ _ s₁ s₂ _ _ ρ₁,s₁⇒ρ₂) = EndToEndTrace-∙ˡ (buildCfg-sufficient ρ₁,s₁⇒ρ₂) buildCfg-sufficient (⇒ˢ-if-false ρ₁ ρ₂ _ s₁ s₂ _ ρ₁,s₂⇒ρ₂) = EndToEndTrace-∙ʳ {buildCfg s₁} (buildCfg-sufficient ρ₁,s₂⇒ρ₂) buildCfg-sufficient (⇒ˢ-while-true ρ₁ ρ₂ ρ₃ _ _ s _ _ ρ₁,s⇒ρ₂ ρ₂,ws⇒ρ₃) = EndToEndTrace-loop² {buildCfg s} (EndToEndTrace-loop {buildCfg s} (buildCfg-sufficient ρ₁,s⇒ρ₂)) (buildCfg-sufficient ρ₂,ws⇒ρ₃) buildCfg-sufficient (⇒ˢ-while-false ρ _ s _) = EndToEndTrace-loop⁰ {buildCfg s} {ρ}