module Lattice where import Data.Nat.Properties as NatProps open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym) open import Relation.Binary.Definitions open import Data.Nat as Nat using (ℕ; _≤_) open import Data.Product using (_×_; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Agda.Primitive using (lsuc; Level) open import NatMap using (NatMap) record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where field ≈-refl : {a : A} → a ≈ a ≈-sym : {a b : A} → a ≈ b → b ≈ a ≈-trans : {a b c : A} → a ≈ b → b ≈ c → a ≈ c record IsSemilattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) : Set a where field ≈-equiv : IsEquivalence A _≈_ ⊔-assoc : (x y z : A) → ((x ⊔ y) ⊔ z) ≈ (x ⊔ (y ⊔ z)) ⊔-comm : (x y : A) → (x ⊔ y) ≈ (y ⊔ x) ⊔-idemp : (x : A) → (x ⊔ x) ≈ x open IsEquivalence ≈-equiv public record IsLattice {a} (A : Set a) (_≈_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set a where field joinSemilattice : IsSemilattice A _≈_ _⊔_ meetSemilattice : IsSemilattice A _≈_ _⊓_ absorb-⊔-⊓ : (x y : A) → (x ⊔ (x ⊓ y)) ≈ x absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x open IsSemilattice joinSemilattice public open IsSemilattice meetSemilattice public renaming ( ⊔-assoc to ⊓-assoc ; ⊔-comm to ⊓-comm ; ⊔-idemp to ⊓-idemp ) record Semilattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A isSemilattice : IsSemilattice A _≈_ _⊔_ open IsSemilattice isSemilattice public record Lattice {a} (A : Set a) : Set (lsuc a) where field _≈_ : A → A → Set a _⊔_ : A → A → A _⊓_ : A → A → A isLattice : IsLattice A _≈_ _⊔_ _⊓_ open IsLattice isLattice public module IsEquivalenceInstances where module ForMap {a b} (A : Set a) (B : Set b) (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set b) (eB : IsEquivalence B _≈₂_) where open import Map A B ≡-dec-A using (Map; lift; subset) open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map open IsEquivalence eB renaming ( ≈-refl to ≈₂-refl ; ≈-sym to ≈₂-sym ; ≈-trans to ≈₂-trans ) private _≈_ : Map → Map → Set (Agda.Primitive._⊔_ a b) _≈_ = lift _≈₂_ _⊆_ : Map → Map → Set (Agda.Primitive._⊔_ a b) _⊆_ = subset _≈₂_ ⊆-refl : (m : Map) → m ⊆ m ⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m)) ⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃ ⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = let (v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ (v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂ in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) ≈-refl : (m : Map) → m ≈ m ≈-refl m = (⊆-refl m , ⊆-refl m) ≈-sym : (m₁ m₂ : Map) → m₁ ≈ m₂ → m₂ ≈ m₁ ≈-sym _ _ (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂) ≈-trans : (m₁ m₂ m₃ : Map) → m₁ ≈ m₂ → m₂ ≈ m₃ → m₁ ≈ m₃ ≈-trans m₁ m₂ m₃ (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) = ( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃ , ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁ ) LiftEquivalence : IsEquivalence Map _≈_ LiftEquivalence = record { ≈-refl = λ {m₁} → ≈-refl m₁ ; ≈-sym = λ {m₁} {m₂} → ≈-sym m₁ m₂ ; ≈-trans = λ {m₁} {m₂} {m₃} → ≈-trans m₁ m₂ m₃ } module IsSemilatticeInstances where module ForNat where open Nat open NatProps open Eq NatIsMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_ NatIsMaxSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idem } NatIsMinSemilattice : IsSemilattice ℕ _≡_ _⊓_ NatIsMinSemilattice = record { ≈-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ; ⊔-assoc = ⊓-assoc ; ⊔-comm = ⊓-comm ; ⊔-idemp = ⊓-idem } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (sA : IsSemilattice A _≈₁_ _⊔₁_) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open Eq open Data.Product private infix 4 _≈_ infixl 20 _⊔_ _≈_ : A × B → A × B → Set a (a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂) _⊔_ : A × B → A × B → A × B (a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂) ⊔-assoc : (p₁ p₂ p₃ : A × B) → (p₁ ⊔ p₂) ⊔ p₃ ≈ p₁ ⊔ (p₂ ⊔ p₃) ⊔-assoc (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) = ( IsSemilattice.⊔-assoc sA a₁ a₂ a₃ , IsSemilattice.⊔-assoc sB b₁ b₂ b₃ ) ⊔-comm : (p₁ p₂ : A × B) → p₁ ⊔ p₂ ≈ p₂ ⊔ p₁ ⊔-comm (a₁ , b₁) (a₂ , b₂) = ( IsSemilattice.⊔-comm sA a₁ a₂ , IsSemilattice.⊔-comm sB b₁ b₂ ) ⊔-idemp : (p : A × B) → p ⊔ p ≈ p ⊔-idemp (a , b) = ( IsSemilattice.⊔-idemp sA a , IsSemilattice.⊔-idemp sB b ) ≈-refl : {p : A × B} → p ≈ p ≈-refl = ( IsSemilattice.≈-refl sA , IsSemilattice.≈-refl sB ) ≈-sym : {p₁ p₂ : A × B} → p₁ ≈ p₂ → p₂ ≈ p₁ ≈-sym (a₁≈a₂ , b₁≈b₂) = ( IsSemilattice.≈-sym sA a₁≈a₂ , IsSemilattice.≈-sym sB b₁≈b₂ ) ≈-trans : {p₁ p₂ p₃ : A × B} → p₁ ≈ p₂ → p₂ ≈ p₃ → p₁ ≈ p₃ ≈-trans (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) = ( IsSemilattice.≈-trans sA a₁≈a₂ a₂≈a₃ , IsSemilattice.≈-trans sB b₁≈b₂ b₂≈b₃ ) ProdIsSemilattice : IsSemilattice (A × B) _≈_ _⊔_ ProdIsSemilattice = record { ≈-equiv = record { ≈-refl = ≈-refl ; ≈-sym = ≈-sym ; ≈-trans = ≈-trans } ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idemp } module ForMap {a} {A B : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) (_≈₂_ : B → B → Set a) (_⊔₂_ : B → B → B) (sB : IsSemilattice B _≈₂_ _⊔₂_) where open import Map A B ≡-dec-A open IsSemilattice sB renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym ; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp ) private infix 4 _≈_ infixl 20 _⊔_ _≈_ : Map → Map → Set a _≈_ = lift (_≈₂_) _⊔_ : Map → Map → Map m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂ _⊓_ : Map → Map → Map m₁ ⊓ m₂ = intersect _⊔₂_ m₁ m₂ module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB) MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_ MapIsUnionSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ⊔-assoc = union-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = union-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = union-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } MapIsIntersectSemilattice : IsSemilattice Map _≈_ _⊓_ MapIsIntersectSemilattice = record { ≈-equiv = MapEquiv.LiftEquivalence ; ⊔-assoc = intersect-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc ; ⊔-comm = intersect-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm ; ⊔-idemp = intersect-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp } module IsLatticeInstances where module ForNat where open Nat open NatProps open Eq open IsSemilatticeInstances.ForNat open Data.Product private max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z max-bound₁ {x} {y} {z} x⊔y≡z rewrite sym x⊔y≡z rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl) min-bound₁ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ x min-bound₁ {x} {y} {z} x⊓y≡z rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl) minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x)) where x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl) -- >:( helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y) helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y where x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl) -- >:( helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x NatIsLattice : IsLattice ℕ _≡_ _⊔_ _⊓_ NatIsLattice = record { joinSemilattice = NatIsMaxSemilattice ; meetSemilattice = NatIsMinSemilattice ; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y} ; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y} } module ForProd {a} {A B : Set a} (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a) (_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where private module ProdJoin = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ (IsLattice.joinSemilattice lA) (IsLattice.joinSemilattice lB) module ProdMeet = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊓₁_ _⊓₂_ (IsLattice.meetSemilattice lA) (IsLattice.meetSemilattice lB) infix 4 _≈_ infixl 20 _⊔_ _≈_ : (A × B) → (A × B) → Set a (a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂) _⊔_ : (A × B) → (A × B) → (A × B) (a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂) _⊓_ : (A × B) → (A × B) → (A × B) (a₁ , b₁) ⊓ (a₂ , b₂) = (a₁ ⊓₁ a₂ , b₁ ⊓₂ b₂) open Eq open Data.Product private absorb-⊔-⊓ : (p₁ p₂ : A × B) → p₁ ⊔ (p₁ ⊓ p₂) ≈ p₁ absorb-⊔-⊓ (a₁ , b₁) (a₂ , b₂) = ( IsLattice.absorb-⊔-⊓ lA a₁ a₂ , IsLattice.absorb-⊔-⊓ lB b₁ b₂ ) absorb-⊓-⊔ : (p₁ p₂ : A × B) → p₁ ⊓ (p₁ ⊔ p₂) ≈ p₁ absorb-⊓-⊔ (a₁ , b₁) (a₂ , b₂) = ( IsLattice.absorb-⊓-⊔ lA a₁ a₂ , IsLattice.absorb-⊓-⊔ lB b₁ b₂ ) ProdIsLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_ ProdIsLattice = record { joinSemilattice = ProdJoin.ProdIsSemilattice ; meetSemilattice = ProdMeet.ProdIsSemilattice ; absorb-⊔-⊓ = absorb-⊔-⊓ ; absorb-⊓-⊔ = absorb-⊓-⊔ }