module Analysis.Sign where open import Data.Integer as Int using (ℤ; +_; -[1+_]) open import Data.Nat as Nat using (ℕ; suc; zero) open import Data.Product using (Σ; proj₁; proj₂; _,_) open import Data.Sum using (inj₁; inj₂) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) open import Relation.Nullary using (¬_; yes; no) open import Language open import Lattice open import Equivalence open import Showable using (Showable; show) open import Utils using (_⇒_; _∧_; _∨_) open import Analysis.Utils using (eval-combine₂) import Analysis.Forward data Sign : Set where + : Sign - : Sign 0ˢ : Sign instance showable : Showable Sign showable = record { show = (λ { + → "+" ; - → "-" ; 0ˢ → "0" }) } -- g for siGn; s is used for strings and i is not very descriptive. _≟ᵍ_ : Decidable (_≡_ {_} {Sign}) _≟ᵍ_ + + = yes refl _≟ᵍ_ + - = no (λ ()) _≟ᵍ_ + 0ˢ = no (λ ()) _≟ᵍ_ - + = no (λ ()) _≟ᵍ_ - - = yes refl _≟ᵍ_ - 0ˢ = no (λ ()) _≟ᵍ_ 0ˢ + = no (λ ()) _≟ᵍ_ 0ˢ - = no (λ ()) _≟ᵍ_ 0ˢ 0ˢ = yes refl instance ≡-equiv : IsEquivalence Sign _≡_ ≡-equiv = record { ≈-refl = refl ; ≈-sym = sym ; ≈-trans = trans } ≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_ ≡-Decidable-Sign = record { R-dec = _≟ᵍ_ } -- embelish 'sign' with a top and bottom element. open import Lattice.AboveBelow Sign _ as AB using () renaming ( AboveBelow to SignLattice ; ⊥ to ⊥ᵍ ; ⊤ to ⊤ᵍ ; [_] to [_]ᵍ ; _≈_ to _≈ᵍ_ ; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ ; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ ; ≈-lift to ≈ᵍ-lift ; ≈-refl to ≈ᵍ-refl ) -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. open AB.Plain 0ˢ using () renaming ( isLattice to isLatticeᵍ ; isFiniteHeightLattice to isFiniteHeightLatticeᵍ ; _≼_ to _≼ᵍ_ ; _⊔_ to _⊔ᵍ_ ; _⊓_ to _⊓ᵍ_ ; ≼-trans to ≼ᵍ-trans ) plus : SignLattice → SignLattice → SignLattice plus ⊥ᵍ _ = ⊥ᵍ plus _ ⊥ᵍ = ⊥ᵍ plus ⊤ᵍ _ = ⊤ᵍ plus _ ⊤ᵍ = ⊤ᵍ plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ -- this is incredibly tedious: 125 cases per monotonicity proof, and tactics -- are hard. postulate for now. postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂) postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) plus-Mono₂ : Monotonic₂ _≼ᵍ_ _≼ᵍ_ _≼ᵍ_ plus plus-Mono₂ = (plus-Monoˡ , plus-Monoʳ) minus : SignLattice → SignLattice → SignLattice minus ⊥ᵍ _ = ⊥ᵍ minus _ ⊥ᵍ = ⊥ᵍ minus ⊤ᵍ _ = ⊤ᵍ minus _ ⊤ᵍ = ⊤ᵍ minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) minus-Mono₂ : Monotonic₂ _≼ᵍ_ _≼ᵍ_ _≼ᵍ_ minus minus-Mono₂ = (minus-Monoˡ , minus-Monoʳ) ⟦_⟧ᵍ : SignLattice → Value → Set ⟦_⟧ᵍ ⊥ᵍ _ = ⊥ ⟦_⟧ᵍ ⊤ᵍ _ = ⊤ ⟦_⟧ᵍ [ + ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ (suc n))) ⟦_⟧ᵍ [ 0ˢ ]ᵍ v = v ≡ ↑ᶻ (+_ zero) ⟦_⟧ᵍ [ - ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ -[1+ n ]) ⟦⟧ᵍ-respects-≈ᵍ : ∀ {s₁ s₂ : SignLattice} → s₁ ≈ᵍ s₂ → ⟦ s₁ ⟧ᵍ ⇒ ⟦ s₂ ⟧ᵍ ⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot ⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof ⟦⟧ᵍ-⊔ᵍ-∨ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∨ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊔ᵍ s₂ ⟧ᵍ ⟦⟧ᵍ-⊔ᵍ-∨ {⊥ᵍ} x (inj₂ px₂) = px₂ ⟦⟧ᵍ-⊔ᵍ-∨ {⊤ᵍ} x _ = tt ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px with s₁ ≟ᵍ s₂ ... | no _ = tt ... | yes refl with px ... | inj₁ px₁ = px₁ ... | inj₂ px₂ = px₂ ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁ ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt s₁≢s₂⇒¬s₁∧s₂ : ∀ {s₁ s₂ : Sign} → ¬ s₁ ≡ s₂ → ∀ {v} → ¬ ((⟦ [ s₁ ]ᵍ ⟧ᵍ ∧ ⟦ [ s₂ ]ᵍ ⟧ᵍ) v) s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl) s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ())) s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , ()) s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ (refl , (m , ())) s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl) s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ (refl , (m , ())) s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ())) s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , ()) s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl) ⟦⟧ᵍ-⊓ᵍ-∧ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∧ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊓ᵍ s₂ ⟧ᵍ ⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot ⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂ ⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂) with s₁ ≟ᵍ s₂ ... | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂) ... | yes refl = px₁ ⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot ⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁ instance latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ latticeInterpretationᵍ = record { ⟦_⟧ = ⟦_⟧ᵍ ; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ ; ⟦⟧-⊔-∨ = ⟦⟧ᵍ-⊔ᵍ-∨ ; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧ } module WithProg (prog : Program) where open Program prog open import Analysis.Forward.Lattices SignLattice prog open import Analysis.Forward.Evaluation SignLattice prog open import Analysis.Forward.Adapters SignLattice prog eval : ∀ (e : Expr) → VariableValues → SignLattice eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs) eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs) eval (` k) vs with ∈k-decᵛ k (proj₁ (proj₁ vs)) ... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs) ... | no _ = ⊤ᵍ eval (# 0) _ = [ 0ˢ ]ᵍ eval (# (suc n')) _ = [ + ]ᵍ eval-Monoʳ : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e) eval-Monoʳ (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ = eval-combine₂ (λ {x} {y} {z} → ≼ᵍ-trans {x} {y} {z}) plus plus-Mono₂ {o₁ = eval e₁ vs₁} (eval-Monoʳ e₁ vs₁≼vs₂) (eval-Monoʳ e₂ vs₁≼vs₂) eval-Monoʳ (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ = eval-combine₂ (λ {x} {y} {z} → ≼ᵍ-trans {x} {y} {z}) minus minus-Mono₂ {o₁ = eval e₁ vs₁} (eval-Monoʳ e₁ vs₁≼vs₂) (eval-Monoʳ e₂ vs₁≼vs₂) eval-Monoʳ (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂ with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂ ... | yes k∈kvs₁ | yes k∈kvs₂ = let (v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} k∈kvs₁ (v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂ in m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂ ... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁)) ... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂)) ... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ eval-Monoʳ (# 0) _ = ≈ᵍ-refl eval-Monoʳ (# (suc n')) _ = ≈ᵍ-refl instance SignEval : ExprEvaluator SignEval = record { eval = eval; eval-Monoʳ = eval-Monoʳ } -- For debugging purposes, print out the result. output = show (Analysis.Forward.WithProg.result SignLattice prog) -- This should have fewer cases -- the same number as the actual 'plus' above. -- But agda only simplifies on first argument, apparently, so we are stuck -- listing them all. plus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ plus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.+ z₂)) plus-valid {⊥ᵍ} {_} ⊥ _ = ⊥ plus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ plus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ plus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ plus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥ plus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt plus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt plus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt plus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt plus-valid {[ + ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl) plus-valid {[ + ]ᵍ} {[ - ]ᵍ} _ _ = tt plus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl) plus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt plus-valid {[ - ]ᵍ} {[ + ]ᵍ} _ _ = tt plus-valid {[ - ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl) plus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl) plus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt plus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl) plus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl) plus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl plus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt -- Same for this one. It should be easier, but Agda won't simplify. minus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ minus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.- z₂)) minus-valid {⊥ᵍ} {_} ⊥ _ = ⊥ minus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ minus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ minus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥ minus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥ minus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt minus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt minus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt minus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt minus-valid {[ + ]ᵍ} {[ + ]ᵍ} _ _ = tt minus-valid {[ + ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl) minus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl) minus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt minus-valid {[ - ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl) minus-valid {[ - ]ᵍ} {[ - ]ᵍ} _ _ = tt minus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl) minus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt minus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl) minus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl) minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt eval-valid : IsValidExprEvaluator eval-valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ = plus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ) eval-valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ = minus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ) eval-valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ with ∈k-decᵛ x (proj₁ (proj₁ vs)) ... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ ... | no x∉kvs = tt eval-valid (⇒ᵉ-ℕ ρ 0) _ = refl eval-valid (⇒ᵉ-ℕ ρ (suc n')) _ = (n' , refl) instance SignEvalValid : ValidExprEvaluator SignEval latticeInterpretationᵍ SignEvalValid = record { valid = eval-valid } analyze-correct = Analysis.Forward.WithProg.analyze-correct SignLattice prog tt