open import Lattice open import Equivalence open import Relation.Nullary using (Dec; ¬_; yes; no) module Lattice.AboveBelow {a} (A : Set a) (_≈₁_ : A → A → Set a) (≈₁-equiv : IsEquivalence A _≈₁_) (≈₁-Decidable : IsDecidable _≈₁_) where open import Data.Empty using (⊥-elim) open import Data.Product using (_,_) open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc) open import Function using (_∘_) open import Showable using (Showable; show) open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst; refl) import Chain open IsEquivalence ≈₁-equiv using () renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans) open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec) data AboveBelow : Set a where ⊥ : AboveBelow ⊤ : AboveBelow [_] : A → AboveBelow instance showable : {{ showableA : Showable A }} → Showable AboveBelow showable = record { show = (λ { ⊥ → "⊥" ; ⊤ → "⊤" ; [ a ] → show a }) } data _≈_ : AboveBelow → AboveBelow → Set a where ≈-⊥-⊥ : ⊥ ≈ ⊥ ≈-⊤-⊤ : ⊤ ≈ ⊤ ≈-lift : ∀ {x y : A} → x ≈₁ y → [ x ] ≈ [ y ] ≈-refl : ∀ {ab : AboveBelow} → ab ≈ ab ≈-refl {⊥} = ≈-⊥-⊥ ≈-refl {⊤} = ≈-⊤-⊤ ≈-refl {[ x ]} = ≈-lift ≈₁-refl ≈-sym : ∀ {ab₁ ab₂ : AboveBelow} → ab₁ ≈ ab₂ → ab₂ ≈ ab₁ ≈-sym ≈-⊥-⊥ = ≈-⊥-⊥ ≈-sym ≈-⊤-⊤ = ≈-⊤-⊤ ≈-sym (≈-lift x≈₁y) = ≈-lift (≈₁-sym x≈₁y) ≈-trans : ∀ {ab₁ ab₂ ab₃ : AboveBelow} → ab₁ ≈ ab₂ → ab₂ ≈ ab₃ → ab₁ ≈ ab₃ ≈-trans ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥ ≈-trans ≈-⊤-⊤ ≈-⊤-⊤ = ≈-⊤-⊤ ≈-trans (≈-lift a₁≈a₂) (≈-lift a₂≈a₃) = ≈-lift (≈₁-trans a₁≈a₂ a₂≈a₃) ≈-equiv : IsEquivalence AboveBelow _≈_ ≈-equiv = record { ≈-refl = ≈-refl ; ≈-sym = ≈-sym ; ≈-trans = ≈-trans } ≈-dec : Decidable _≈_ ≈-dec ⊥ ⊥ = yes ≈-⊥-⊥ ≈-dec ⊤ ⊤ = yes ≈-⊤-⊤ ≈-dec [ x ] [ y ] with ≈₁-dec x y ... | yes x≈y = yes (≈-lift x≈y) ... | no x̷≈y = no (λ { (≈-lift x≈y) → x̷≈y x≈y }) ≈-dec ⊤ ⊥ = no λ () ≈-dec ⊤ [ x ] = no λ () ≈-dec ⊥ ⊤ = no λ () ≈-dec ⊥ [ x ] = no λ () ≈-dec [ x ] ⊥ = no λ () ≈-dec [ x ] ⊤ = no λ () ≈-Decidable : IsDecidable _≈_ ≈-Decidable = record { R-dec = ≈-dec } -- Any object can be wrapped in an 'above below' to make it a lattice, -- since ⊤ and ⊥ are the largest and least elements, and the rest are left -- unordered. That's what this module does. -- -- For convenience, ask for the underlying type to always be inhabited, to -- avoid requiring additional constraints in some of the proofs below. module Plain (x : A) where _⊔_ : AboveBelow → AboveBelow → AboveBelow ⊥ ⊔ x = x ⊤ ⊔ x = ⊤ [ x ] ⊔ [ y ] with ≈₁-dec x y ... | yes _ = [ x ] ... | no _ = ⊤ x ⊔ ⊥ = x x ⊔ ⊤ = ⊤ ⊤⊔x≡⊤ : ∀ (x : AboveBelow) → ⊤ ⊔ x ≡ ⊤ ⊤⊔x≡⊤ _ = refl x⊔⊤≡⊤ : ∀ (x : AboveBelow) → x ⊔ ⊤ ≡ ⊤ x⊔⊤≡⊤ ⊤ = refl x⊔⊤≡⊤ ⊥ = refl x⊔⊤≡⊤ [ x ] = refl ⊥⊔x≡x : ∀ (x : AboveBelow) → ⊥ ⊔ x ≡ x ⊥⊔x≡x _ = refl x⊔⊥≡x : ∀ (x : AboveBelow) → x ⊔ ⊥ ≡ x x⊔⊥≡x ⊤ = refl x⊔⊥≡x ⊥ = refl x⊔⊥≡x [ x ] = refl x≈y⇒[x]⊔[y]≡[x] : ∀ {x y : A} → x ≈₁ y → [ x ] ⊔ [ y ] ≡ [ x ] x≈y⇒[x]⊔[y]≡[x] {x} {y} x≈₁y with ≈₁-dec x y ... | yes _ = refl ... | no x̷≈₁y = ⊥-elim (x̷≈₁y x≈₁y) x̷≈y⇒[x]⊔[y]≡⊤ : ∀ {x y : A} → ¬ x ≈₁ y → [ x ] ⊔ [ y ] ≡ ⊤ x̷≈y⇒[x]⊔[y]≡⊤ {x} {y} x̷≈₁y with ≈₁-dec x y ... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y) ... | no x̷≈₁y = refl ≈-⊔-cong : ∀ {ab₁ ab₂ ab₃ ab₄} → ab₁ ≈ ab₂ → ab₃ ≈ ab₄ → (ab₁ ⊔ ab₃) ≈ (ab₂ ⊔ ab₄) ≈-⊔-cong ≈-⊤-⊤ ≈-⊤-⊤ = ≈-⊤-⊤ ≈-⊔-cong ≈-⊤-⊤ ≈-⊥-⊥ = ≈-⊤-⊤ ≈-⊔-cong ≈-⊥-⊥ ≈-⊤-⊤ = ≈-⊤-⊤ ≈-⊔-cong ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥ ≈-⊔-cong ≈-⊥-⊥ (≈-lift x≈y) = ≈-lift x≈y ≈-⊔-cong (≈-lift x≈y) ≈-⊥-⊥ = ≈-lift x≈y ≈-⊔-cong ≈-⊤-⊤ (≈-lift x≈y) = ≈-⊤-⊤ ≈-⊔-cong (≈-lift x≈y) ≈-⊤-⊤ = ≈-⊤-⊤ ≈-⊔-cong (≈-lift {a₁} {a₂} a₁≈a₂) (≈-lift {a₃} {a₄} a₃≈a₄) with ≈₁-dec a₁ a₃ | ≈₁-dec a₂ a₄ ... | yes a₁≈a₃ | yes a₂≈a₄ = ≈-lift a₁≈a₂ ... | yes a₁≈a₃ | no a₂̷≈a₄ = ⊥-elim (a₂̷≈a₄ (≈₁-trans (≈₁-sym a₁≈a₂) (≈₁-trans (a₁≈a₃) a₃≈a₄))) ... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄)))) ... | no _ | no _ = ≈-⊤-⊤ ⊔-assoc : ∀ (ab₁ ab₂ ab₃ : AboveBelow) → ((ab₁ ⊔ ab₂) ⊔ ab₃) ≈ (ab₁ ⊔ (ab₂ ⊔ ab₃)) ⊔-assoc ⊤ ab₂ ab₃ = ≈-⊤-⊤ ⊔-assoc ⊥ ab₂ ab₃ = ≈-refl ⊔-assoc [ x₁ ] ⊤ ab₃ = ≈-⊤-⊤ ⊔-assoc [ x₁ ] ⊥ ab₃ = ≈-refl ⊔-assoc [ x₁ ] [ x₂ ] ⊤ rewrite x⊔⊤≡⊤ ([ x₁ ] ⊔ [ x₂ ]) = ≈-⊤-⊤ ⊔-assoc [ x₁ ] [ x₂ ] ⊥ rewrite x⊔⊥≡x ([ x₁ ] ⊔ [ x₂ ]) = ≈-refl ⊔-assoc [ x₁ ] [ x₂ ] [ x₃ ] with ≈₁-dec x₂ x₃ | ≈₁-dec x₁ x₂ ... | no x₂̷≈x₃ | no _ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃ = ≈-⊤-⊤ ... | no x₂̷≈x₃ | yes x₁≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃ rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₂̷≈x₃ ∘ (≈₁-trans (≈₁-sym x₁≈x₂))) = ≈-⊤-⊤ ... | yes x₂≈x₃ | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] x₂≈x₃ rewrite x≈y⇒[x]⊔[y]≡[x] x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-trans x₁≈x₂ x₂≈x₃) = ≈-refl ... | yes x₂≈x₃ | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₁̷≈x₂ = ≈-⊤-⊤ ⊔-comm : ∀ (ab₁ ab₂ : AboveBelow) → (ab₁ ⊔ ab₂) ≈ (ab₂ ⊔ ab₁) ⊔-comm ⊤ x rewrite x⊔⊤≡⊤ x = ≈-refl ⊔-comm ⊥ x rewrite x⊔⊥≡x x = ≈-refl ⊔-comm x ⊤ rewrite x⊔⊤≡⊤ x = ≈-refl ⊔-comm x ⊥ rewrite x⊔⊥≡x x = ≈-refl ⊔-comm [ x₁ ] [ x₂ ] with ≈₁-dec x₁ x₂ ... | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-sym x₁≈x₂) = ≈-lift x₁≈x₂ ... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₁̷≈x₂ ∘ ≈₁-sym) = ≈-⊤-⊤ ⊔-idemp : ∀ ab → (ab ⊔ ab) ≈ ab ⊔-idemp ⊤ = ≈-⊤-⊤ ⊔-idemp ⊥ = ≈-⊥-⊥ ⊔-idemp [ x ] rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-refl {x}) = ≈-refl isJoinSemilattice : IsSemilattice AboveBelow _≈_ _⊔_ isJoinSemilattice = record { ≈-equiv = ≈-equiv ; ≈-⊔-cong = ≈-⊔-cong ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idemp } _⊓_ : AboveBelow → AboveBelow → AboveBelow ⊥ ⊓ x = ⊥ ⊤ ⊓ x = x [ x ] ⊓ [ y ] with ≈₁-dec x y ... | yes _ = [ x ] ... | no _ = ⊥ x ⊓ ⊥ = ⊥ x ⊓ ⊤ = x ⊥⊓x≡⊥ : ∀ (x : AboveBelow) → ⊥ ⊓ x ≡ ⊥ ⊥⊓x≡⊥ _ = refl x⊓⊥≡⊥ : ∀ (x : AboveBelow) → x ⊓ ⊥ ≡ ⊥ x⊓⊥≡⊥ ⊤ = refl x⊓⊥≡⊥ ⊥ = refl x⊓⊥≡⊥ [ x ] = refl ⊤⊓x≡x : ∀ (x : AboveBelow) → ⊤ ⊓ x ≡ x ⊤⊓x≡x _ = refl x⊓⊤≡x : ∀ (x : AboveBelow) → x ⊓ ⊤ ≡ x x⊓⊤≡x ⊤ = refl x⊓⊤≡x ⊥ = refl x⊓⊤≡x [ x ] = refl x≈y⇒[x]⊓[y]≡[x] : ∀ {x y : A} → x ≈₁ y → [ x ] ⊓ [ y ] ≡ [ x ] x≈y⇒[x]⊓[y]≡[x] {x} {y} x≈₁y with ≈₁-dec x y ... | yes _ = refl ... | no x̷≈₁y = ⊥-elim (x̷≈₁y x≈₁y) x̷≈y⇒[x]⊓[y]≡⊥ : ∀ {x y : A} → ¬ x ≈₁ y → [ x ] ⊓ [ y ] ≡ ⊥ x̷≈y⇒[x]⊓[y]≡⊥ {x} {y} x̷≈₁y with ≈₁-dec x y ... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y) ... | no x̷≈₁y = refl ≈-⊓-cong : ∀ {ab₁ ab₂ ab₃ ab₄} → ab₁ ≈ ab₂ → ab₃ ≈ ab₄ → (ab₁ ⊓ ab₃) ≈ (ab₂ ⊓ ab₄) ≈-⊓-cong ≈-⊤-⊤ ≈-⊤-⊤ = ≈-⊤-⊤ ≈-⊓-cong ≈-⊤-⊤ ≈-⊥-⊥ = ≈-⊥-⊥ ≈-⊓-cong ≈-⊥-⊥ ≈-⊤-⊤ = ≈-⊥-⊥ ≈-⊓-cong ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥ ≈-⊓-cong ≈-⊤-⊤ (≈-lift x≈y) = ≈-lift x≈y ≈-⊓-cong (≈-lift x≈y) ≈-⊤-⊤ = ≈-lift x≈y ≈-⊓-cong ≈-⊥-⊥ (≈-lift x≈y) = ≈-⊥-⊥ ≈-⊓-cong (≈-lift x≈y) ≈-⊥-⊥ = ≈-⊥-⊥ ≈-⊓-cong (≈-lift {a₁} {a₂} a₁≈a₂) (≈-lift {a₃} {a₄} a₃≈a₄) with ≈₁-dec a₁ a₃ | ≈₁-dec a₂ a₄ ... | yes a₁≈a₃ | yes a₂≈a₄ = ≈-lift a₁≈a₂ ... | yes a₁≈a₃ | no a₂̷≈a₄ = ⊥-elim (a₂̷≈a₄ (≈₁-trans (≈₁-sym a₁≈a₂) (≈₁-trans (a₁≈a₃) a₃≈a₄))) ... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄)))) ... | no _ | no _ = ≈-⊥-⊥ ⊓-assoc : ∀ (ab₁ ab₂ ab₃ : AboveBelow) → ((ab₁ ⊓ ab₂) ⊓ ab₃) ≈ (ab₁ ⊓ (ab₂ ⊓ ab₃)) ⊓-assoc ⊥ ab₂ ab₃ = ≈-⊥-⊥ ⊓-assoc ⊤ ab₂ ab₃ = ≈-refl ⊓-assoc [ x₁ ] ⊥ ab₃ = ≈-⊥-⊥ ⊓-assoc [ x₁ ] ⊤ ab₃ = ≈-refl ⊓-assoc [ x₁ ] [ x₂ ] ⊥ rewrite x⊓⊥≡⊥ ([ x₁ ] ⊓ [ x₂ ]) = ≈-⊥-⊥ ⊓-assoc [ x₁ ] [ x₂ ] ⊤ rewrite x⊓⊤≡x ([ x₁ ] ⊓ [ x₂ ]) = ≈-refl ⊓-assoc [ x₁ ] [ x₂ ] [ x₃ ] with ≈₁-dec x₂ x₃ | ≈₁-dec x₁ x₂ ... | no x₂̷≈x₃ | no _ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₂̷≈x₃ = ≈-⊥-⊥ ... | no x₂̷≈x₃ | yes x₁≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₂̷≈x₃ rewrite x̷≈y⇒[x]⊓[y]≡⊥ λ x₁≈x₃ → x₂̷≈x₃ (≈₁-trans (≈₁-sym x₁≈x₂) x₁≈x₃) = ≈-⊥-⊥ ... | yes x₂≈x₃ | yes x₁≈x₂ rewrite x≈y⇒[x]⊓[y]≡[x] x₂≈x₃ rewrite x≈y⇒[x]⊓[y]≡[x] x₁≈x₂ rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-trans x₁≈x₂ x₂≈x₃) = ≈-refl ... | yes x₂≈x₃ | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₁̷≈x₂ = ≈-⊥-⊥ ⊓-comm : ∀ (ab₁ ab₂ : AboveBelow) → (ab₁ ⊓ ab₂) ≈ (ab₂ ⊓ ab₁) ⊓-comm ⊥ x rewrite x⊓⊥≡⊥ x = ≈-refl ⊓-comm ⊤ x rewrite x⊓⊤≡x x = ≈-refl ⊓-comm x ⊥ rewrite x⊓⊥≡⊥ x = ≈-refl ⊓-comm x ⊤ rewrite x⊓⊤≡x x = ≈-refl ⊓-comm [ x₁ ] [ x₂ ] with ≈₁-dec x₁ x₂ ... | yes x₁≈x₂ rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-sym x₁≈x₂) = ≈-lift x₁≈x₂ ... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ λ x₂≈x₁ → (x₁̷≈x₂ (≈₁-sym x₂≈x₁)) = ≈-⊥-⊥ ⊓-idemp : ∀ ab → (ab ⊓ ab) ≈ ab ⊓-idemp ⊥ = ≈-⊥-⊥ ⊓-idemp ⊤ = ≈-⊤-⊤ ⊓-idemp [ x ] rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-refl {x}) = ≈-refl isMeetSemilattice : IsSemilattice AboveBelow _≈_ _⊓_ isMeetSemilattice = record { ≈-equiv = ≈-equiv ; ≈-⊔-cong = ≈-⊓-cong ; ⊔-assoc = ⊓-assoc ; ⊔-comm = ⊓-comm ; ⊔-idemp = ⊓-idemp } absorb-⊔-⊓ : ∀ (ab₁ ab₂ : AboveBelow) → (ab₁ ⊔ (ab₁ ⊓ ab₂)) ≈ ab₁ absorb-⊔-⊓ ⊥ ab₂ rewrite ⊥⊓x≡⊥ ab₂ = ≈-⊥-⊥ absorb-⊔-⊓ ⊤ _ = ≈-⊤-⊤ absorb-⊔-⊓ [ x ] ⊥ rewrite x⊓⊥≡⊥ [ x ] rewrite x⊔⊥≡x [ x ] = ≈-refl absorb-⊔-⊓ [ x ] ⊤ rewrite x⊓⊤≡x [ x ] = ⊔-idemp _ absorb-⊔-⊓ [ x ] [ y ] with ≈₁-dec x y ... | yes x≈y rewrite x≈y⇒[x]⊓[y]≡[x] x≈y = ⊔-idemp _ ... | no x̷≈y rewrite x̷≈y⇒[x]⊓[y]≡⊥ x̷≈y rewrite x⊔⊥≡x [ x ] = ≈-refl absorb-⊓-⊔ : ∀ (ab₁ ab₂ : AboveBelow) → (ab₁ ⊓ (ab₁ ⊔ ab₂)) ≈ ab₁ absorb-⊓-⊔ ⊤ ab₂ rewrite ⊤⊔x≡⊤ ab₂ = ≈-⊤-⊤ absorb-⊓-⊔ ⊥ _ = ≈-⊥-⊥ absorb-⊓-⊔ [ x ] ⊤ rewrite x⊔⊤≡⊤ [ x ] rewrite x⊓⊤≡x [ x ] = ≈-refl absorb-⊓-⊔ [ x ] ⊥ rewrite x⊔⊥≡x [ x ] = ⊓-idemp _ absorb-⊓-⊔ [ x ] [ y ] with ≈₁-dec x y ... | yes x≈y rewrite x≈y⇒[x]⊔[y]≡[x] x≈y = ⊓-idemp _ ... | no x̷≈y rewrite x̷≈y⇒[x]⊔[y]≡⊤ x̷≈y rewrite x⊓⊤≡x [ x ] = ≈-refl isLattice : IsLattice AboveBelow _≈_ _⊔_ _⊓_ isLattice = record { joinSemilattice = isJoinSemilattice ; meetSemilattice = isMeetSemilattice ; absorb-⊔-⊓ = absorb-⊔-⊓ ; absorb-⊓-⊔ = absorb-⊓-⊔ } lattice : Lattice AboveBelow lattice = record { _≈_ = _≈_ ; _⊔_ = _⊔_ ; _⊓_ = _⊓_ ; isLattice = isLattice } open IsLattice isLattice using (_≼_; _≺_; ⊔-Monotonicˡ; ⊔-Monotonicʳ) public ⊥≺[x] : ∀ (x : A) → ⊥ ≺ [ x ] ⊥≺[x] x = (≈-refl , λ ()) x≺[y]⇒x≡⊥ : ∀ (x : AboveBelow) (y : A) → x ≺ [ y ] → x ≡ ⊥ x≺[y]⇒x≡⊥ x y ((x⊔[y]≈[y]) , x̷≈[y]) with x ... | ⊥ = refl ... | ⊤ with () ← x⊔[y]≈[y] ... | [ b ] with ≈₁-dec b y ... | yes b≈y = ⊥-elim (x̷≈[y] (≈-lift b≈y)) ... | no _ with () ← x⊔[y]≈[y] [x]≺⊤ : ∀ (x : A) → [ x ] ≺ ⊤ [x]≺⊤ x rewrite x⊔⊤≡⊤ [ x ] = (≈-⊤-⊤ , λ ()) [x]≺y⇒y≡⊤ : ∀ (x : A) (y : AboveBelow) → [ x ] ≺ y → y ≡ ⊤ [x]≺y⇒y≡⊤ x y ([x]⊔y≈y , [x]̷≈y) with y ... | ⊥ with () ← [x]⊔y≈y ... | ⊤ = refl ... | [ a ] with ≈₁-dec x a ... | yes x≈a = ⊥-elim ([x]̷≈y (≈-lift x≈a)) ... | no _ with () ← [x]⊔y≈y open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice) longestChain : Chain ⊥ ⊤ 2 longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤)) ¬-Chain-⊤ : ∀ {ab : AboveBelow} {n : ℕ} → ¬ Chain ⊤ ab (suc n) ¬-Chain-⊤ {x} (step (⊤⊔x≈x , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ x = ⊥-elim (⊤̷≈x ⊤⊔x≈x) isLongest : ∀ {ab₁ ab₂ : AboveBelow} {n : ℕ} → Chain ab₁ ab₂ n → n ≤ 2 isLongest (done _) = z≤n isLongest (step _ _ (done _)) = s≤s z≤n isLongest (step _ _ (step _ _ (done _))) = s≤s (s≤s z≤n) isLongest {⊤} c@(step _ _ _) = ⊥-elim (¬-Chain-⊤ c) isLongest {[ x ]} (step {_} {y} [x]≺y y≈y' c@(step _ _ _)) rewrite [x]≺y⇒y≡⊤ x y [x]≺y with ≈-⊤-⊤ ← y≈y' = ⊥-elim (¬-Chain-⊤ c) isLongest {⊥} (step {_} {⊥} (_ , ⊥̷≈⊥) _ _) = ⊥-elim (⊥̷≈⊥ ≈-⊥-⊥) isLongest {⊥} (step {_} {⊤} _ ≈-⊤-⊤ c@(step _ _ _)) = ⊥-elim (¬-Chain-⊤ c) isLongest {⊥} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _))) rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c) fixedHeight : IsLattice.FixedHeight isLattice 2 fixedHeight = record { ⊥ = ⊥ ; ⊤ = ⊤ ; longestChain = longestChain ; bounded = isLongest } isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_ isFiniteHeightLattice = record { isLattice = isLattice ; fixedHeight = fixedHeight } finiteHeightLattice : FiniteHeightLattice AboveBelow finiteHeightLattice = record { height = 2 ; _≈_ = _≈_ ; _⊔_ = _⊔_ ; _⊓_ = _⊓_ ; isFiniteHeightLattice = isFiniteHeightLattice }