open import Lattice open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) module Lattice.MapSet {a : Level} {A : Set a} (≡-Decidable-A : IsDecidable (_≡_ {a} {A})) where open import Data.List using (List; map) open import Data.Product using (_,_; proj₁) open import Function using (_∘_) open import Lattice.Unit using (⊤; tt) renaming (_≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_; isLattice to ⊤-isLattice) import Lattice.Map private module UnitMap = Lattice.Map ≡-Decidable-A ⊤-isLattice open UnitMap using (Map; Expr; ⟦_⟧) renaming ( Expr-Provenance to Expr-Provenanceᵐ ) open UnitMap using ( _⊆_; _≈_; ≈-equiv; _⊔_; _⊓_; _∪_ ; _∩_ ; `_; empty; forget ; isUnionSemilattice; isIntersectSemilattice; isLattice; lattice ; Provenance ; ⊔-preserves-∈k₁ ; ⊔-preserves-∈k₂ ) renaming (_∈k_ to _∈_) public open Provenance public MapSet : Set a MapSet = Map to-List : MapSet → List A to-List = map proj₁ ∘ proj₁ insert : A → MapSet → MapSet insert k = UnitMap.insert k tt singleton : A → MapSet singleton k = UnitMap.insert k tt empty Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈ ⟦ e ⟧ → Provenance k tt e Expr-Provenance k e k∈e = let (tt , (prov , _)) = Expr-Provenanceᵐ k e k∈e in prov