open import Agda.Primitive using (lsuc) module MonotonicState {s} {S : Set s} (_≼_ : S → S → Set s) (≼-trans : ∀ {s₁ s₂ s₃ : S} → s₁ ≼ s₂ → s₂ ≼ s₃ → s₁ ≼ s₃) where open import Data.Product using (Σ; _×_; _,_) open import Utils using (_⊗_; _,_) -- Sometimes, we need a state monad whose values depend on the state. However, -- one trouble with such monads is that as the state evolves, old values -- in scope are over the 'old' state, and don't get updated accordingly. -- Apparently, a related version of this problem is called 'demonic bind'. -- -- One solution to the problem is to also witness some kind of relationtion -- between the input and output states. Using this relationship makes it possible -- to 'bring old values up to speed'. -- -- Motivated primarily by constructing a Control Flow Graph, the 'relationship' -- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just -- a (dependent) state "monad" that also witnesses that the state keeps growing. MonotonicState : (S → Set s) → Set s MonotonicState T = (s₁ : S) → Σ S (λ s₂ → T s₂ × s₁ ≼ s₂) -- It's not a given that the (arbitrary) _≼_ relationship can be used for -- updating old values. The Relaxable typeclass represents type constructor -- that support the operation. record Relaxable (T : S → Set s) : Set (lsuc s) where field relax : ∀ {s₁ s₂ : S} → s₁ ≼ s₂ → T s₁ → T s₂ instance ProdRelaxable : ∀ {P : S → Set s} {Q : S → Set s} → {{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} → Relaxable (P ⊗ Q) ProdRelaxable {{pr}} {{qr}} = record { relax = (λ { g₁≼g₂ (p , q) → ( Relaxable.relax pr g₁≼g₂ p , Relaxable.relax qr g₁≼g₂ q) } ) } -- In general, the "MonotonicState monad" is not even a monad; it's not -- even applicative. The trouble is that functions in general cannot be -- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus -- need to un-relax the value (which also isn't possible in general). -- -- However, we _can_ combine pairs from two functions into a tuple, which -- would equivalent to the applicative operation if functions were relaxable. -- -- TODO: Now that I think about it, the swapped version of the applicative -- operation is possible, since it doesn't require lifting functions. infixr 4 _⟨⊗⟩_ _⟨⊗⟩_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }} → MonotonicState T₁ → MonotonicState T₂ → MonotonicState (T₁ ⊗ T₂) _⟨⊗⟩_ {{r}} f₁ f₂ s with (s' , (t₁ , s≼s')) ← f₁ s with (s'' , (t₂ , s'≼s'')) ← f₂ s' = (s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s'')) infixl 4 _update_ _update_ : ∀ {T : S → Set s} {{ _ : Relaxable T }} → MonotonicState T → (∀ (s : S) → T s → Σ S (λ s' → s ≼ s')) → MonotonicState T _update_ {{r}} f mod s with (s' , (t , s≼s')) ← f s with (s'' , s'≼s'') ← mod s' t = (s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s''))) infixl 4 _map_ _map_ : ∀ {T₁ T₂ : S → Set s} → MonotonicState T₁ → (∀ (s : S) → T₁ s → T₂ s) → MonotonicState T₂ _map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s')) -- To reason about MonotonicState instances, we need predicates over their -- values. But such values are dependent, so our predicates need to accept -- the state as argument, too. DependentPredicate : (S → Set s) → Set (lsuc s) DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s data Both {T₁ T₂ : S → Set s} (P : DependentPredicate T₁) (Q : DependentPredicate T₂) : DependentPredicate (T₁ ⊗ T₂) where MkBoth : ∀ {s : S} {t₁ : T₁ s} {t₂ : T₂ s} → P s t₁ → Q s t₂ → Both P Q s (t₁ , t₂) data And {T : S → Set s} (P : DependentPredicate T) (Q : DependentPredicate T) : DependentPredicate T where MkAnd : ∀ {s : S} {t : T s} → P s t → Q s t → And P Q s t -- Since monotnic functions keep adding on to the state, proofs of -- predicates over their outputs go stale fast (they describe old values of -- the state). To keep them relevant, we need them to still hold on 'bigger -- states'. We call such predicates monotonic as well, since they respect the -- ordering relation. record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) → P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁) instance BothMonotonic : ∀ {T₁ : S → Set s} {T₂ : S → Set s} {{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }} {P : DependentPredicate T₁} {Q : DependentPredicate T₂} {{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} → MonotonicPredicate (Both P Q) BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record { relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q) → MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p) (MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)}) } AndMonotonic : ∀ {T : S → Set s} {{ _ : Relaxable T }} {P : DependentPredicate T} {Q : DependentPredicate T} {{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} → MonotonicPredicate (And P Q) AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record { relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q) → MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p) (MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)}) } -- A MonotonicState "monad" m has a certain property if its ouputs satisfy that -- property for all inputs. data Always {T : S → Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where MkAlways : (∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t) → Always P m infixr 4 _⟨⊗⟩-reason_ _⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }} {P : DependentPredicate T₁} {Q : DependentPredicate T₂} {{P-Mono : MonotonicPredicate P}} {m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} → Always P m₁ → Always Q m₂ → Always (Both P Q) (m₁ ⟨⊗⟩ m₂) _⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) = MkAlways impl where impl : ∀ s₁ → let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t impl s with p ← aP s with (s' , (t₁ , s≼s')) ← m₁ s with q ← aQ s' with (s'' , (t₂ , s'≼s'')) ← m₂ s' = MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q infixl 4 _update-reason_ _update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} → {P : DependentPredicate T} {Q : DependentPredicate T} {{P-Mono : MonotonicPredicate P}} {m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} → Always P m → (∀ (s : S) (t : T s) → let (s' , s≼s') = mod s t in P s t → Q s' (Relaxable.relax r s≼s' t)) → Always (And P Q) (m update mod) _update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ = MkAlways impl where impl : ∀ s₁ → let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t impl s with p ← aP s with (s' , (t , s≼s')) ← m s with q ← modQ s' t p with (s'' , s'≼s'') ← mod s' t = MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q infixl 4 _map-reason_ _map-reason_ : ∀ {T₁ T₂ : S → Set s} {P : DependentPredicate T₁} {Q : DependentPredicate T₂} {m : MonotonicState T₁} {f : ∀ (s : S) → T₁ s → T₂ s} → Always P m → (∀ (s : S) (t₁ : T₁ s) → P s t₁ → Q s (f s t₁)) → Always Q (m map f) _map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q = MkAlways impl where impl : ∀ s₁ → let (s₂ , t , _) = (m map f) s₁ in Q s₂ t impl s with p ← aP s with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ p