module Language.Graphs where open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_) open import Data.Fin as Fin using (Fin; suc; zero) open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.List as List using (List; []; _∷_) open import Data.List.Membership.Propositional as ListMem using () open import Data.List.Membership.Propositional.Properties as ListMemProp using () open import Data.Nat as Nat using (ℕ; suc) open import Data.Nat.Properties using (+-assoc; +-comm) open import Data.Product using (_×_; Σ; _,_) open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_) open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans) open import Lattice open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct) record Graph : Set where constructor MkGraph field size : ℕ Index : Set Index = Fin size Edge : Set Edge = Index × Index field nodes : Vec (List BasicStmt) size edges : List Edge inputs : List Index outputs : List Index _↑ˡ_ : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m) _↑ʳ_ : ∀ {m} n → (Fin m × Fin m) → Fin (n Nat.+ m) × Fin (n Nat.+ m) _↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂) _↑ˡⁱ_ : ∀ {n} → List (Fin n) → ∀ m → List (Fin (n Nat.+ m)) _↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l _↑ʳⁱ_ : ∀ {m} n → List (Fin m) → List (Fin (n Nat.+ m)) _↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l _↑ˡᵉ_ : ∀ {n} → List (Fin n × Fin n) → ∀ m → List (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ˡᵉ_ l m = List.map (_↑ˡ m) l _↑ʳᵉ_ : ∀ {m} n → List (Fin m × Fin m) → List (Fin (n Nat.+ m) × Fin (n Nat.+ m)) _↑ʳᵉ_ n l = List.map (n ↑ʳ_) l infixl 5 _∙_ _∙_ : Graph → Graph → Graph _∙_ g₁ g₂ = record { size = Graph.size g₁ Nat.+ Graph.size g₂ ; nodes = Graph.nodes g₁ ++ Graph.nodes g₂ ; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂) ; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂) ; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳⁱ Graph.outputs g₂) } infixl 5 _↦_ _↦_ : Graph → Graph → Graph _↦_ g₁ g₂ = record { size = Graph.size g₁ Nat.+ Graph.size g₂ ; nodes = Graph.nodes g₁ ++ Graph.nodes g₂ ; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++ (List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) (Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)) ; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂ ; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂ } loop : Graph → Graph loop g = record { size = Graph.size g ; nodes = Graph.nodes g ; edges = Graph.edges g List.++ List.cartesianProduct (Graph.outputs g) (Graph.inputs g) ; inputs = Graph.inputs g ; outputs = Graph.outputs g } _[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt _[_] g idx = lookup (Graph.nodes g) idx singleton : List BasicStmt → Graph singleton bss = record { size = 1 ; nodes = bss ∷ [] ; edges = [] ; inputs = zero ∷ [] ; outputs = zero ∷ [] } buildCfg : Stmt → Graph buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ []) buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂ buildCfg (if _ then s₁ else s₂) = singleton [] ↦ (buildCfg s₁ ∙ buildCfg s₂) ↦ singleton [] buildCfg (while _ repeat s) = loop (buildCfg s ↦ singleton []) -- record _⊆_ (g₁ g₂ : Graph) : Set where -- constructor Mk-⊆ -- field -- n : ℕ -- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n -- newNodes : Vec (List BasicStmt) n -- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes -- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} → -- e ListMem.∈ (Graph.edges g₁) → -- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂)) -- -- private -- castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m) -- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂) -- -- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) → -- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂)) -- ↑ˡ-assoc zero p = refl -- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl -- -- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) → -- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂)) -- ↑ˡ-Edge-assoc (idx₁ , idx₂) p -- rewrite ↑ˡ-assoc idx₁ p -- rewrite ↑ˡ-assoc idx₂ p = refl -- -- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) → -- f ≡ Fin.cast p (f ↑ˡ 0) -- ↑ˡ-identityʳ zero p = refl -- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl -- -- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) → -- e ≡ castᵉ p (↑ˡ-Edge e 0) -- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p -- rewrite sym (↑ˡ-identityʳ idx₁ p) -- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl -- -- cast∈⇒∈subst : ∀ {n m : ℕ} (p : n ≡ m) (q : m ≡ n) -- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) → -- castᵉ p e ListMem.∈ es → -- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es -- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es -- rewrite FinProp.cast-is-id refl idx₁ -- rewrite FinProp.cast-is-id refl idx₂ = e∈es -- -- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃ -- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃} -- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂) -- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃) -- rewrite cast-is-id refl ns₂ -- rewrite cast-is-id refl ns₃ -- with refl ← nsg₂≡nsg₁++newNodes₁ -- with refl ← nsg₃≡nsg₂++newNodes₂ = -- record -- { n = n₁ Nat.+ n₂ -- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂ -- ; newNodes = newNodes₁ ++ newNodes₂ -- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂ -- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ → -- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _ -- (subst (λ e' → e' ListMem.∈ es₃) -- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂))) -- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁))) -- } -- -- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction) -- -- instance -- IndexRelaxable : Relaxable Graph.Index -- IndexRelaxable = record -- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n } -- } -- -- EdgeRelaxable : Relaxable Graph.Edge -- EdgeRelaxable = record -- { relax = λ g₁⊆g₂ (idx₁ , idx₂) → -- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁ -- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂ -- ) -- } -- -- open Relaxable {{...}} -- -- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index -- pushBasicBlock bss g = -- ( record -- { size = Graph.size g Nat.+ 1 -- ; nodes = Graph.nodes g ++ (bss ∷ []) -- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g) -- } -- , ( Graph.size g ↑ʳ zero -- , record -- { n = 1 -- ; sg₂≡sg₁+n = refl -- ; newNodes = (bss ∷ []) -- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _ -- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁ -- } -- ) -- ) -- -- pushEmptyBlock : MonotonicGraphFunction Graph.Index -- pushEmptyBlock = pushBasicBlock [] -- -- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g') -- addEdges (MkGraph s ns es) es' = -- ( record -- { size = s -- ; nodes = ns -- ; edges = es' List.++ es -- } -- , record -- { n = 0 -- ; sg₂≡sg₁+n = +-comm 0 s -- ; newNodes = [] -- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns) -- ; e∈g₁⇒e∈g₂ = λ {e} e∈es → -- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _ -- (subst (λ e' → e' ListMem.∈ _) -- (↑ˡ-Edge-identityʳ e (+-comm s 0)) -- (ListMemProp.∈-++⁺ʳ es' e∈es)) -- } -- ) -- -- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index) -- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx)) -- buildCfg (s₁ then s₂) = -- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂) -- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) }) -- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) }) -- buildCfg (if _ then s₁ else s₂) = -- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock) -- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → -- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) }) -- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') }) -- buildCfg (while _ repeat s) = -- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock) -- update (λ { g ((idx₁ , idx₂) , idx , idx') → -- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) }) -- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })