open import Language hiding (_[_]) open import Lattice module Analysis.Forward.Lattices {L : Set} {h} {_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L} (isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_) (≈ˡ-dec : IsDecidable _≈ˡ_) (prog : Program) where open import Data.String using () renaming (_≟_ to _≟ˢ_) open import Data.Product using (proj₁; proj₂; _,_) open import Data.Sum using (inj₁; inj₂) open import Data.List using (List; _∷_; []; foldr) open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_) open import Data.List.Relation.Unary.Any as Any using () open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Utils using (Pairwise; _⇒_; _∨_) open IsFiniteHeightLattice isFiniteHeightLatticeˡ using () renaming ( isLattice to isLatticeˡ ; fixedHeight to fixedHeightˡ ; ≈-sym to ≈ˡ-sym ) open Program prog import Lattice.FiniteValueMap import Chain -- The variable -> abstract value (e.g. sign) map is a finite value-map -- with keys strings. Use a bundle to avoid explicitly specifying operators. -- It's helpful to export these via 'public' since consumers tend to -- use various variable lattice operations. module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars open VariableValuesFiniteMap using () renaming ( FiniteMap to VariableValues ; isLattice to isLatticeᵛ ; _≈_ to _≈ᵛ_ ; _⊔_ to _⊔ᵛ_ ; _≼_ to _≼ᵛ_ ; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec ; _∈_ to _∈ᵛ_ ; _∈k_ to _∈kᵛ_ ; _updating_via_ to _updatingᵛ_via_ ; locate to locateᵛ ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ ; ∈k-dec to ∈k-decᵛ ; all-equal-keys to all-equal-keysᵛ ) public open IsLattice isLatticeᵛ using () renaming ( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ ; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ ; ⊔-idemp to ⊔ᵛ-idemp ) public open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ using () renaming ( Provenance-union to Provenance-unionᵐ ) public open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵛ ; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms ) public ≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ ⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ -- Finally, the map we care about is (state -> (variables -> value)). Bring that in. module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states open StateVariablesFiniteMap using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂) renaming ( FiniteMap to StateVariables ; isLattice to isLatticeᵐ ; _≈_ to _≈ᵐ_ ; _∈_ to _∈ᵐ_ ; _∈k_ to _∈kᵐ_ ; locate to locateᵐ ; _≼_ to _≼ᵐ_ ; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ ) public open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵐ ) public open IsFiniteHeightLattice isFiniteHeightLatticeᵐ using () renaming ( ≈-sym to ≈ᵐ-sym ) public ≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ -- We now have our (state -> (variables -> value)) map. -- Define a couple of helpers to retrieve values from it. Specifically, -- since the State type is as specific as possible, it's always possible to -- retrieve the variable values at each state. states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s variablesAt : State → StateVariables → VariableValues variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv)) variablesAt-∈ : ∀ (s : State) (sv : StateVariables) → (s , variablesAt s sv) ∈ᵐ sv variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv)) variablesAt-≈ : ∀ s sv₁ sv₂ → sv₁ ≈ᵐ sv₂ → variablesAt s sv₁ ≈ᵛ variablesAt s sv₂ variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ = m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂ (states-in-Map s sv₁) (states-in-Map s sv₂) -- build up the 'join' function, which follows from Exercise 4.26's -- -- L₁ → (A → L₂) -- -- Construction, with L₁ = (A → L₂), and f = id joinForKey : State → StateVariables → VariableValues joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ]) -- The per-key join is made up of map key accesses (which are monotonic) -- and folds using the join operation (also monotonic) joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k) joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ = foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ (m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂) (⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ -- The name f' comes from the formulation of Exercise 4.26. open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states using () renaming ( f' to joinAll ; f'-Monotonic to joinAll-Mono ; f'-k∈ks-≡ to joinAll-k∈ks-≡ ) public variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) → variablesAt s (joinAll sv) ≡ joinForKey s sv variablesAt-joinAll s sv with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) = joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv -- Elements of the lattice type L describe individual variables. What -- exactly each lattice element says about the variable is defined -- by a LatticeInterpretation element. We've now constructed the -- (Variable → L) lattice, which describes states, and we need to lift -- the "meaning" of the element lattice to a descriptions of states. module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} where open LatticeInterpretation latticeInterpretationˡ using () renaming ( ⟦_⟧ to ⟦_⟧ˡ ; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ ; ⟦⟧-⊔-∨ to ⟦⟧ˡ-⊔ˡ-∨ ) public ⟦_⟧ᵛ : VariableValues → Env → Set ⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v ⟦⊥ᵛ⟧ᵛ∅ : ⟦ ⊥ᵛ ⟧ᵛ [] ⟦⊥ᵛ⟧ᵛ∅ _ () ⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ ⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _} (m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ = let (l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂ ⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ in ⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v ⟦⟧ᵛ-⊔ᵛ-∨ : ∀ {vs₁ vs₂ : VariableValues} → (⟦ vs₁ ⟧ᵛ ∨ ⟦ vs₂ ⟧ᵛ) ⇒ ⟦ vs₁ ⊔ᵛ vs₂ ⟧ᵛ ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁} {vs₂} ρ ⟦vs₁⟧ρ∨⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂))) ← Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂ with ⟦vs₁⟧ρ∨⟦vs₂⟧ρ ... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ)) ... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ)) ⟦⟧ᵛ-foldr : ∀ {vs : VariableValues} {vss : List VariableValues} {ρ : Env} → ⟦ vs ⟧ᵛ ρ → vs ∈ˡ vss → ⟦ foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ ⟦⟧ᵛ-foldr {vs} {vs ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) = ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ) ⟦⟧ᵛ-foldr {vs} {vs' ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') = ⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))