open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong) open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.Core using (Rel) open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) module Map {a b : Level} (A : Set a) (B : Set b) (≡-dec-A : Decidable (_≡_ {a} {A})) where import Data.List.Membership.Propositional as MemProp open import Relation.Nullary using (¬_) open import Data.Nat using (ℕ) open import Data.List using (List; map; []; _∷_; _++_) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂) open import Data.Empty using (⊥) keys : List (A × B) → List A keys = map proj₁ data Unique {c} {C : Set c} : List C → Set c where empty : Unique [] push : ∀ {x : C} {xs : List C} → All (λ x' → ¬ x ≡ x') xs → Unique xs → Unique (x ∷ xs) Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ [])) Unique-append {c} {C} {x} {[]} _ _ = push [] empty Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs') where x'≢x : ¬ x' ≡ x x'≢x x'≡x = x∉xs (here (sym x'≡x)) help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ [])) help {[]} _ = x'≢x ∷ [] help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs absurd : ∀ {a} {A : Set a} → ⊥ → A absurd () private module _ where open MemProp using (_∈_) unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l) unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x) unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) = unique-not-in (rest , k,v'∈xs) ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v' ListAB-functional _ (here k,v≡x) (here k,v'≡x) = cong proj₂ (trans k,v≡x (sym k,v'≡x)) ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs) rewrite sym k,v≡x = absurd (unique-not-in (k≢xs , k,v'∈xs)) ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x) rewrite sym k,v'≡x = absurd (unique-not-in (k≢xs , k,v∈xs)) ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) = ListAB-functional uxs k,v∈xs k,v'∈xs ∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ keys l) ∈k-dec k [] = no (λ ()) ∈k-dec k ((k' , v) ∷ xs) with (≡-dec-A k k') ... | yes k≡k' = yes (here k≡k') ... | no k≢k' with (∈k-dec k xs) ... | yes k∈kxs = yes (there k∈kxs) ... | no k∉kxs = no witness where witness : ¬ k ∈ keys ((k' , v) ∷ xs) witness (here k≡k') = k≢k' k≡k' witness (there k∈kxs) = k∉kxs k∈kxs ∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} → (f : C → D) → c ∈ l → f c ∈ map f l ∈-cong f (here c≡c') = here (cong f c≡c') ∈-cong f (there c∈xs) = there (∈-cong f c∈xs) locate : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l) locate {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl) locate {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate k∈kxs in (v , there k,v∈xs) private module ImplRelation (_≈_ : B → B → Set b) where open MemProp using (_∈_) subset : List (A × B) → List (A × B) → Set (a ⊔ℓ b) subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ → Σ B (λ v' → v ≈ v' × ((k , v') ∈ m₂)) private module ImplInsert (f : B → B → B) where open import Data.List using (map) open MemProp using (_∈_) private _∈k_ : A → List (A × B) → Set a _∈k_ k m = k ∈ (keys m) foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C foldr f b [] = b foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs) insert : A → B → List (A × B) → List (A × B) insert k v [] = (k , v) ∷ [] insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k' ... | yes _ = (k' , f v v') ∷ xs ... | no _ = x ∷ insert k v xs union : List (A × B) → List (A × B) → List (A × B) union m₁ m₂ = foldr insert m₂ m₁ insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} → k ∈k l → keys l ≡ keys (insert k v l) insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k') with (≡-dec-A k k') ... | yes _ = refl ... | no k≢k' = absurd (k≢k' k≡k') insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs) with (≡-dec-A k k') ... | yes _ = refl ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs) insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l) insert-keys-∉ {k} {v} {[]} _ = refl insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl with (≡-dec-A k k') ... | yes k≡k' = absurd (k∉kl (here k≡k')) ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} → Unique (keys l) → Unique (keys (insert k v l)) insert-preserves-Unique {k} {v} {l} u with (∈k-dec k l) ... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u ... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) → Unique (keys l₂) → Unique (keys (union l₁ l₂)) union-preserves-Unique [] l₂ u₂ = u₂ union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ = insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂) insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ k ∈k l → (k , v) ∈ insert k v l insert-fresh {l = []} k∉kl = here refl insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl with ≡-dec-A k k' ... | yes k≡k' = absurd (k∉kl (here k≡k')) ... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → ¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k' insert-preserves-∉k {l = []} k≢k' k∉kl (there ()) insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil with ≡-dec-A k k'' ... | yes k≡k'' = k∉kl (here k≡k'') ... | no k≢k'' with ≡-dec-A k' k'' | k∈kil ... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k'' ... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs) ... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'') ... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k' (λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂ union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂ union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂ with ≡-dec-A k k' ... | yes k≡k' = absurd (k∉kl₁ (here k≡k')) ... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂) insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → k ∈k l → k ∈k insert k' v' l insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'') with (≡-dec-A k' k'') ... | yes _ = here k≡k'' ... | no _ = here k≡k'' insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs) with (≡-dec-A k' k'') ... | yes _ = there k∈kxs ... | no _ = there (insert-preserves-∈k k∈kxs) union-preserves-∈k₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k l₁ → k ∈k (union l₁ l₂) union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (here k≡k') with ∈k-dec k (union xs l₂) ... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂ ... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂) union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (there k∈kxs) = insert-preserves-∈k (union-preserves-∈k₁ k∈kxs) union-preserves-∈k₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k l₂ → k ∈k (union l₁ l₂) union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂ union-preserves-∈k₂ {k} {(k' , v') ∷ xs} {l₂} k∈kl₂ = insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂) ∉-union-∉-either : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k union l₁ l₂ → ¬ k ∈k l₁ × ¬ k ∈k l₂ ∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂ with ∈k-dec k l₁ ... | yes k∈kl₁ = absurd (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁)) ... | no k∉kl₁ with ∈k-dec k l₂ ... | yes k∈kl₂ = absurd (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂)) ... | no k∉kl₂ = (k∉kl₁ , k∉kl₂) insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} → ¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x) rewrite sym k,v=x with ≡-dec-A k' k ... | yes k'≡k = absurd (k≢k' (sym k'≡k)) ... | no _ = here refl insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs) with ≡-dec-A k' k'' ... | yes _ = there k,v∈xs ... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs) union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂ union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ = let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂ in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ = insert-preserves-∈ k≢k' k,v∈mxs₁l where k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂ k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁)) ... | no k≢k' = k≢k' union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂ rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' = insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂) insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l) insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'') rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v'' with ≡-dec-A k' k' ... | yes _ = here refl ... | no k≢k' = absurd (k≢k' refl) insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs) with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs)) ... | no k≢k' = there (insert-combines uxs k,v'∈xs) union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂ union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂ rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) = insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂) union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ = insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂) where k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁)) ... | no k≢k' = k≢k' update : A → B → List (A × B) → List (A × B) update k v [] = [] update k v ((k' , v') ∷ xs) with ≡-dec-A k k' ... | yes _ = (k' , f v v') ∷ xs ... | no _ = (k' , v') ∷ update k v xs updates : List (A × B) → List (A × B) → List (A × B) updates l₁ l₂ = foldr update l₂ l₁ restrict : List (A × B) → List (A × B) → List (A × B) restrict l [] = [] restrict l ((k' , v') ∷ xs) with ∈k-dec k' l ... | yes _ = (k' , v') ∷ restrict l xs ... | no _ = restrict l xs intersect : List (A × B) → List (A × B) → List (A × B) intersect l₁ l₂ = restrict l₁ (updates l₁ l₂) update-keys : ∀ {k : A} {v : B} {l : List (A × B)} → keys l ≡ keys (update k v l) update-keys {l = []} = refl update-keys {k} {v} {l = (k' , v') ∷ xs} with ≡-dec-A k k' ... | yes _ = refl ... | no _ rewrite update-keys {k} {v} {xs} = refl updates-keys : ∀ {l₁ l₂ : List (A × B)} → keys l₂ ≡ keys (updates l₁ l₂) updates-keys {[]} = refl updates-keys {(k , v) ∷ xs} {l₂} rewrite updates-keys {xs} {l₂} rewrite update-keys {k} {v} {updates xs l₂} = refl update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} → Unique (keys l) → Unique (keys (update k v l )) update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (updates l₁ l₂)) updates-preserve-Unique {[]} u = u updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u) restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} → All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂)) restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂ restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs) with ∈k-dec k' l₁ ... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs ... | no _ = restrict-preserves-k≢ k≢xs restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (restrict l₁ l₂)) restrict-preserves-Unique {l₁} {[]} _ = empty restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs) with ∈k-dec k l₁ ... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs) ... | no _ = restrict-preserves-Unique uxs intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (intersect l₁ l₂)) intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u) updates-preserve-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k updates l₁ l₂ updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂ restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂) restrict-needs-both {k} {l₁} {[]} () restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂ with ∈k-dec k' l₁ | k∈l₁l₂ ... | yes k'∈kl₁ | here k≡k' rewrite k≡k' = (k'∈kl₁ , here refl) ... | yes _ | there k∈l₁xs = let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs in (k∈kl₁ , there k∈kxs) ... | no k'∉kl₁ | k∈l₁xs = let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs in (k∈kl₁ , there k∈kxs) restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂ restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ = let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁ restrict-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k restrict l₁ l₂ restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ = let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂ intersect-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k intersect l₁ l₂ intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂} intersect-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k intersect l₁ l₂ intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ ) restrict-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ restrict l₁ l₂ restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') ∷ xs} k∈kl₁ (here k,v≡k',v') rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' with ∈k-dec k' l₁ ... | yes _ = here refl ... | no k'∉kl₁ = absurd (k'∉kl₁ k∈kl₁) restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') ∷ xs} k∈kl₁ (there k,v∈xs) with ∈k-dec k' l₁ ... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs) ... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} → ¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'') rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v'' with ≡-dec-A k' k'' ... | yes k'≡k'' = absurd (k≢k' (sym k'≡k'')) ... | no _ = here refl update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs) with ≡-dec-A k' k'' ... | yes _ = there k,v∈xs ... | no _ = there (update-preserves-∈ k≢k' k,v∈xs) updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂ updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂ updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ = update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂) update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'') rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v'' with ≡-dec-A k' k' ... | yes _ = here refl ... | no k'≢k' = absurd (k'≢k' refl) update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs) with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs)) ... | no _ = there (update-combines uxs k,v∈xs) updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂ updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂ rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' = update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂) updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ = update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂) where k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs)) ... | no k≢k' = k≢k' intersect-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ intersect l₁ l₂ intersect-combines u₁ u₂ k,v₁∈l₁ k,v₂∈l₂ = restrict-preserves-∈₂ (∈-cong proj₁ k,v₁∈l₁) (updates-combine u₁ u₂ k,v₁∈l₁ k,v₂∈l₂) Map : Set (a ⊔ℓ b) Map = Σ (List (A × B)) (λ l → Unique (keys l)) _∈_ : (A × B) → Map → Set (a ⊔ℓ b) _∈_ p (kvs , _) = MemProp._∈_ p kvs _∈k_ : A → Map → Set a _∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs) Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v' Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m data Expr : Set (a ⊔ℓ b) where `_ : Map → Expr _∪_ : Expr → Expr → Expr _∩_ : Expr → Expr → Expr module _ (f : B → B → B) where open ImplInsert f renaming ( insert to insert-impl ; union to union-impl ; intersect to intersect-impl ) union : Map → Map → Map union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂) intersect : Map → Map → Map intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂) module _ (fUnion : B → B → B) (fIntersect : B → B → B) where open ImplInsert fUnion using ( union-combines ; union-preserves-∈₁ ; union-preserves-∈₂ ; union-preserves-∉ ) open ImplInsert fIntersect using ( restrict-needs-both ; updates ; intersect-preserves-∉₁ ; intersect-preserves-∉₂ ; intersect-combines ) ⟦_⟧ : Expr -> Map ⟦ ` m ⟧ = m ⟦ e₁ ∪ e₂ ⟧ = union fUnion ⟦ e₁ ⟧ ⟦ e₂ ⟧ ⟦ e₁ ∩ e₂ ⟧ = intersect fIntersect ⟦ e₁ ⟧ ⟦ e₂ ⟧ data Provenance (k : A) : B → Expr → Set (a ⊔ℓ b) where single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m) in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂) in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂) bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (fUnion v₁ v₂) (e₁ ∪ e₂) bothⁱ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (fIntersect v₁ v₂) (e₁ ∩ e₂) Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧)) Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m)) Expr-Provenance k (e₁ ∪ e₂) k∈ke₁e₂ with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧) ... | yes k∈ke₁ | yes k∈ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (fUnion v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)) ... | yes k∈ke₁ | no k∉ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂)) ... | no k∉ke₁ | yes k∈ke₂ = let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂)) ... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂) Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂ with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧) ... | yes k∈ke₁ | yes k∈ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (fIntersect v₁ v₂ , (bothⁱ g₁ g₂ , intersect-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)) ... | yes k∈ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂) ... | no k∉ke₁ | yes k∈ke₂ = absurd (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂) ... | no k∉ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂) module _ (_≈_ : B → B → Set b) where open ImplRelation _≈_ renaming (subset to subset-impl) subset : Map → Map → Set (a ⊔ℓ b) subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂ lift : Map → Map → Set (a ⊔ℓ b) lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁ module _ (≈-refl : ∀ {b : B} → b ≈ b) (≈-sym : ∀ {b₁ b₂ : B} → b₁ ≈ b₂ → b₂ ≈ b₁) (f : B → B → B) where private module I = ImplInsert f -- The Provenance type requires both union and intersection functions, -- but here we're working with one operation only. Just use the union function -- for both -- it doesn't matter, since we don't use intersection in -- these proofs. module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where union-idemp : ∀ (m : Map) → lift (union f m m) m union-idemp m@(l , u) = (mm-m-subset , m-mm-subset) where mm-m-subset : subset (union f m m) m mm-m-subset k v k,v∈mm with Expr-Provenance f f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm) ... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm)) rewrite Map-functional {m = m} v'∈m v''∈m rewrite Map-functional {m = union f m m} k,v∈mm v'v''∈mm = (v'' , (f-idemp v'' , v''∈m)) ... | (_ , (in₁ (single {v'} v'∈m) k∉km , _)) = absurd (k∉km (∈-cong proj₁ v'∈m)) ... | (_ , (in₂ k∉km (single {v''} v''∈m) , _)) = absurd (k∉km (∈-cong proj₁ v''∈m)) m-mm-subset : subset m (union f m m) m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.union-combines u u k,v∈m k,v∈m)) module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≈ f b₂ b₁) where union-comm : ∀ (m₁ m₂ : Map) → lift (union f m₁ m₂) (union f m₂ m₁) union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁) where union-comm-subset : ∀ (m₁ m₂ : Map) → subset (union f m₁ m₂) (union f m₂ m₁) union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂ with Expr-Provenance f f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂) ... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ = (f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁)) ... | (_ , (in₁ {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ = (v₁ , (≈-refl , I.union-preserves-∈₂ k∉km₂ v₁∈m₁)) ... | (_ , (in₂ {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂)) rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ = (v₂ , (≈-refl , I.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁)) module _ (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≈ f b₁ (f b₂ b₃)) where union-assoc : ∀ (m₁ m₂ m₃ : Map) → lift (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃)) union-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (union-assoc₁ , union-assoc₂) where union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃)) union-assoc₁ k v k,v∈m₁₂m₃ with Expr-Provenance f f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃) ... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ = let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂ in (v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃))) ... | (_ , (in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ , v₂∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂∈m₁₂m₃ = (v₂ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃))) ... | (_ , (bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂v₃∈m₁₂m₃ = (f v₂ v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) ... | (_ , (in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁∈m₁₂m₃ = (v₁ , (≈-refl , I.union-preserves-∈₁ u₁ v₁∈e₁ (I.union-preserves-∉ k∉ke₂ k∉ke₃))) ... | (_ , (bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₃∈m₁₂m₃ = (f v₁ v₃ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃))) ... | (_ , (in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂∈m₁₂m₃ = (f v₁ v₂ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃))) ... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃)) rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ = (f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃) union-assoc₂ k v k,v∈m₁m₂₃ with Expr-Provenance f f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃) ... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ = (v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃)) ... | (_ , (in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₂∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂∈m₁m₂₃ = (v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃)) ... | (_ , (in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₂v₃∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂v₃∈m₁m₂₃ = (f v₂ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃)) ... | (_ , (in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ , v₁∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁∈m₁m₂₃ = let (k∉ke₂ , k∉ke₃) = I.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃ in (v₁ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃)) ... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₁v₃∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₃∈m₁m₂₃ = (f v₁ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃)) ... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₁v₂∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂∈m₁m₂₃ = (f v₁ v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃)) ... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃)) rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ = (f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃)) module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where intersect-idemp : ∀ (m : Map) → lift (intersect f m m) m intersect-idemp m@(l , u) = (mm-m-subset , m-mm-subset) where mm-m-subset : subset (intersect f m m) m mm-m-subset k v k,v∈mm with Expr-Provenance f f k ((` m) ∩ (` m)) (∈-cong proj₁ k,v∈mm) ... | (_ , (bothⁱ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm)) rewrite Map-functional {m = m} v'∈m v''∈m rewrite Map-functional {m = intersect f m m} k,v∈mm v'v''∈mm = (v'' , (f-idemp v'' , v''∈m)) m-mm-subset : subset m (intersect f m m) m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.intersect-combines u u k,v∈m k,v∈m)) module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≈ f b₂ b₁) where intersect-comm : ∀ (m₁ m₂ : Map) → lift (intersect f m₁ m₂) (intersect f m₂ m₁) intersect-comm m₁ m₂ = (intersect-comm-subset m₁ m₂ , intersect-comm-subset m₂ m₁) where intersect-comm-subset : ∀ (m₁ m₂ : Map) → subset (intersect f m₁ m₂) (intersect f m₂ m₁) intersect-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂ with Expr-Provenance f f k ((` m₁) ∩ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂) ... | (_ , (bothⁱ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂)) rewrite Map-functional {m = intersect f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ = (f v₂ v₁ , (f-comm v₁ v₂ , I.intersect-combines u₂ u₁ v₂∈m₂ v₁∈m₁)) module _ (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≈ f b₁ (f b₂ b₃)) where intersect-assoc : ∀ (m₁ m₂ m₃ : Map) → lift (intersect f (intersect f m₁ m₂) m₃) (intersect f m₁ (intersect f m₂ m₃)) intersect-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (intersect-assoc₁ , intersect-assoc₂) where intersect-assoc₁ : subset (intersect f (intersect f m₁ m₂) m₃) (intersect f m₁ (intersect f m₂ m₃)) intersect-assoc₁ k v k,v∈m₁₂m₃ with Expr-Provenance f f k (((` m₁) ∩ (` m₂)) ∩ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃) ... | (_ , (bothⁱ (bothⁱ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃)) rewrite Map-functional {m = intersect f (intersect f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ = (f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.intersect-combines u₁ (I.intersect-preserves-Unique {l₂} {l₃} u₃) v₁∈e₁ (I.intersect-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) intersect-assoc₂ : subset (intersect f m₁ (intersect f m₂ m₃)) (intersect f (intersect f m₁ m₂) m₃) intersect-assoc₂ k v k,v∈m₁m₂₃ with Expr-Provenance f f k ((` m₁) ∩ ((` m₂) ∩ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃) ... | (_ , (bothⁱ (single {v₁} v₁∈e₁) (bothⁱ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃)) rewrite Map-functional {m = intersect f m₁ (intersect f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ = (f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.intersect-combines (I.intersect-preserves-Unique {l₁} {l₂} u₂) u₃ (I.intersect-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃)) module _ (≈-refl : ∀ {b : B} → b ≈ b) (≈-sym : ∀ {b₁ b₂ : B} → b₁ ≈ b₂ → b₂ ≈ b₁) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (⊔₂-idemp : ∀ (b : B) → (b ⊔₂ b) ≈ b) (⊓₂-idemp : ∀ (b : B) → (b ⊓₂ b) ≈ b) (⊔₂-⊓₂-absorb : ∀ (b₁ b₂ : B) → (b₁ ⊔₂ (b₁ ⊓₂ b₂)) ≈ b₁) (⊓₂-⊔₂-absorb : ∀ (b₁ b₂ : B) → (b₁ ⊓₂ (b₁ ⊔₂ b₂)) ≈ b₁) where private module I⊔ = ImplInsert _⊔₂_ private module I⊓ = ImplInsert _⊓₂_ private _⊔_ = union _⊔₂_ _⊓_ = intersect _⊓₂_ intersect-union-absorb : ∀ (m₁ m₂ : Map) → lift (m₁ ⊓ (m₁ ⊔ m₂)) m₁ intersect-union-absorb m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (intersect-union-absorb₁ , intersect-union-absorb₂) where intersect-union-absorb₁ : subset (m₁ ⊓ (m₁ ⊔ m₂)) m₁ intersect-union-absorb₁ k v k,v∈m₁m₁₂ with Expr-Provenance _ _ k ((` m₁) ∩ ((` m₁) ∪ (` m₂))) (∈-cong proj₁ k,v∈m₁m₁₂) ... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁) (bothᵘ (single {v₁'} k,v₁'∈m₁) (single {v₂} v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂)) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ rewrite Map-functional {m = m₁ ⊓ (m₁ ⊔ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ = (v₁' , (⊓₂-⊔₂-absorb v₁' v₂ , k,v₁'∈m₁)) ... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁) (in₁ (single {v₁'} k,v₁'∈m₁) _) , v₁v₁'∈m₁m₁₂)) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ rewrite Map-functional {m = m₁ ⊓ (m₁ ⊔ m₂)} k,v∈m₁m₁₂ v₁v₁'∈m₁m₁₂ = (v₁' , (⊓₂-idemp v₁' , k,v₁'∈m₁)) ... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁) (in₂ k∉m₁ _ ) , _)) = absurd (k∉m₁ (∈-cong proj₁ k,v₁∈m₁)) intersect-union-absorb₂ : subset m₁ (m₁ ⊓ (m₁ ⊔ m₂)) intersect-union-absorb₂ k v k,v∈m₁ with ∈k-dec k l₂ ... | yes k∈km₂ = let (v₂ , k,v₂∈m₂) = locate k∈km₂ in (v ⊓₂ (v ⊔₂ v₂) , (≈-sym (⊓₂-⊔₂-absorb v v₂) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂))) ... | no k∉km₂ = (v ⊓₂ v , (≈-sym (⊓₂-idemp v) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-preserves-∈₁ u₁ k,v∈m₁ k∉km₂))) union-intersect-absorb : ∀ (m₁ m₂ : Map) → lift (m₁ ⊔ (m₁ ⊓ m₂)) m₁ union-intersect-absorb m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (union-intersect-absorb₁ , union-intersect-absorb₂) where union-intersect-absorb₁ : subset (m₁ ⊔ (m₁ ⊓ m₂)) m₁ union-intersect-absorb₁ k v k,v∈m₁m₁₂ with Expr-Provenance _ _ k ((` m₁) ∪ ((` m₁) ∩ (` m₂))) (∈-cong proj₁ k,v∈m₁m₁₂) ... | (_ , (bothᵘ (single {v₁} k,v₁∈m₁) (bothⁱ (single {v₁'} k,v₁'∈m₁) (single {v₂} k,v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂)) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ rewrite Map-functional {m = m₁ ⊔ (m₁ ⊓ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ = (v₁' , (⊔₂-⊓₂-absorb v₁' v₂ , k,v₁'∈m₁)) ... | (_ , (in₁ (single {v₁} k,v₁∈m₁) k∉km₁₂ , k,v₁∈m₁m₁₂)) rewrite Map-functional {m = m₁ ⊔ (m₁ ⊓ m₂)} k,v∈m₁m₁₂ k,v₁∈m₁m₁₂ = (v₁ , (≈-refl , k,v₁∈m₁)) ... | (_ , (in₂ k∉km₁ (bothⁱ (single {v₁'} k,v₁'∈m₁) (single {v₂} k,v₂∈m₂)) , _)) = absurd (k∉km₁ (∈-cong proj₁ k,v₁'∈m₁)) union-intersect-absorb₂ : subset m₁ (m₁ ⊔ (m₁ ⊓ m₂)) union-intersect-absorb₂ k v k,v∈m₁ with ∈k-dec k l₂ ... | yes k∈km₂ = let (v₂ , k,v₂∈m₂) = locate k∈km₂ in (v ⊔₂ (v ⊓₂ v₂) , (≈-sym (⊔₂-⊓₂-absorb v v₂) , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂))) ... | no k∉km₂ = (v , (≈-refl , I⊔.union-preserves-∈₁ u₁ k,v∈m₁ (I⊓.intersect-preserves-∉₂ {k} {l₁} {l₂} k∉km₂)))