open import Lattice open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Relation.Binary.Definitions using (Decidable) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) module Lattice.Map {a b : Level} (A : Set a) (B : Set b) (_≈₂_ : B → B → Set b) (_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B) (≡-dec-A : Decidable (_≡_ {a} {A})) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Nat using (ℕ) open import Data.List using (List; map; []; _∷_; _++_) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂) open import Data.Empty using (⊥; ⊥-elim) open import Equivalence open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs) open IsLattice lB using () renaming ( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans ; ≈-⊔-cong to ≈₂-⊔₂-cong; ≈-⊓-cong to ≈₂-⊓₂-cong ; ⊔-idemp to ⊔₂-idemp; ⊔-comm to ⊔₂-comm; ⊔-assoc to ⊔₂-assoc ; ⊓-idemp to ⊓₂-idemp; ⊓-comm to ⊓₂-comm; ⊓-assoc to ⊓₂-assoc ; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂ ; _≼_ to _≼₂_ ) private module ImplKeys where keys : List (A × B) → List A keys = map proj₁ -- See note on `forget` for why this is defined in global scope even though -- it operates on lists. ∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ˡ (ImplKeys.keys l)) ∈k-dec k [] = no (λ ()) ∈k-dec k ((k' , v) ∷ xs) with (≡-dec-A k k') ... | yes k≡k' = yes (here k≡k') ... | no k≢k' with (∈k-dec k xs) ... | yes k∈kxs = yes (there k∈kxs) ... | no k∉kxs = no witness where witness : ¬ k ∈ˡ (ImplKeys.keys ((k' , v) ∷ xs)) witness (here k≡k') = k≢k' k≡k' witness (there k∈kxs) = k∉kxs k∈kxs private module _ where open MemProp using (_∈_) open ImplKeys unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l) unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x) unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) = unique-not-in (rest , k,v'∈xs) ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v' ListAB-functional _ (here k,v≡x) (here k,v'≡x) = cong proj₂ (trans k,v≡x (sym k,v'≡x)) ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs) rewrite sym k,v≡x = ⊥-elim (unique-not-in (k≢xs , k,v'∈xs)) ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x) rewrite sym k,v'≡x = ⊥-elim (unique-not-in (k≢xs , k,v∈xs)) ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) = ListAB-functional uxs k,v∈xs k,v'∈xs k∈-dec : ∀ (k : A) (l : List A) → Dec (k ∈ l) k∈-dec k [] = no (λ ()) k∈-dec k (x ∷ xs) with (≡-dec-A k x) ... | yes refl = yes (here refl) ... | no k≢x with (k∈-dec k xs) ... | yes k∈xs = yes (there k∈xs) ... | no k∉xs = no (λ { (here k≡x) → k≢x k≡x; (there k∈xs) → k∉xs k∈xs }) ∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} → (f : C → D) → c ∈ l → f c ∈ map f l ∈-cong f (here c≡c') = here (cong f c≡c') ∈-cong f (there c∈xs) = there (∈-cong f c∈xs) locate-impl : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l) locate-impl {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl) locate-impl {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate-impl k∈kxs in (v , there k,v∈xs) private module ImplRelation where open MemProp using (_∈_) subset : List (A × B) → List (A × B) → Set (a ⊔ℓ b) subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ → Σ B (λ v' → v ≈₂ v' × ((k , v') ∈ m₂)) private module ImplInsert (f : B → B → B) where open import Data.List using (map) open MemProp using (_∈_) open ImplKeys private _∈k_ : A → List (A × B) → Set a _∈k_ k m = k ∈ (keys m) foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C foldr f b [] = b foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs) insert : A → B → List (A × B) → List (A × B) insert k v [] = (k , v) ∷ [] insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k' ... | yes _ = (k' , f v v') ∷ xs ... | no _ = x ∷ insert k v xs union : List (A × B) → List (A × B) → List (A × B) union m₁ m₂ = foldr insert m₂ m₁ insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} → k ∈k l → keys l ≡ keys (insert k v l) insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k') with (≡-dec-A k k') ... | yes _ = refl ... | no k≢k' = ⊥-elim (k≢k' k≡k') insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs) with (≡-dec-A k k') ... | yes _ = refl ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs) insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l) insert-keys-∉ {k} {v} {[]} _ = refl insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl with (≡-dec-A k k') ... | yes k≡k' = ⊥-elim (k∉kl (here k≡k')) ... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} → Unique (keys l) → Unique (keys (insert k v l)) insert-preserves-Unique {k} {v} {l} u with (∈k-dec k l) ... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u ... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u union-subset-keys : ∀ {l₁ l₂ : List (A × B)} → All (λ k → k ∈k l₂) (keys l₁) → keys l₂ ≡ keys (union l₁ l₂) union-subset-keys {[]} _ = refl union-subset-keys {(k , v) ∷ l₁'} (k∈kl₂ ∷ kl₁'⊆kl₂) rewrite union-subset-keys kl₁'⊆kl₂ = insert-keys-∈ k∈kl₂ union-equal-keys : ∀ {l₁ l₂ : List (A × B)} → keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂) union-equal-keys {l₁} {l₂} kl₁≡kl₂ with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁)) ... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂) union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) → Unique (keys l₂) → Unique (keys (union l₁ l₂)) union-preserves-Unique [] l₂ u₂ = u₂ union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ = insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂) insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} → ¬ k ∈k l → (k , v) ∈ insert k v l insert-fresh {l = []} k∉kl = here refl insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl with ≡-dec-A k k' ... | yes k≡k' = ⊥-elim (k∉kl (here k≡k')) ... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs))) insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → ¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k' insert-preserves-∉k {l = []} k≢k' k∉kl (there ()) insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil with ≡-dec-A k k'' ... | yes k≡k'' = k∉kl (here k≡k'') ... | no k≢k'' with ≡-dec-A k' k'' | k∈kil ... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k'' ... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs) ... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'') ... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k' (λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂ union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂ union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂ with ≡-dec-A k k' ... | yes k≡k' = ⊥-elim (k∉kl₁ (here k≡k')) ... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂) insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} → k ∈k l → k ∈k insert k' v' l insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'') with (≡-dec-A k' k'') ... | yes _ = here k≡k'' ... | no _ = here k≡k'' insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs) with (≡-dec-A k' k'') ... | yes _ = there k∈kxs ... | no _ = there (insert-preserves-∈k k∈kxs) union-preserves-∈k₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k l₁ → k ∈k (union l₁ l₂) union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (here k≡k') with ∈k-dec k (union xs l₂) ... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂ ... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂) union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (there k∈kxs) = insert-preserves-∈k (union-preserves-∈k₁ k∈kxs) union-preserves-∈k₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k l₂ → k ∈k (union l₁ l₂) union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂ union-preserves-∈k₂ {k} {(k' , v') ∷ xs} {l₂} k∈kl₂ = insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂) ∉-union-∉-either : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k union l₁ l₂ → ¬ k ∈k l₁ × ¬ k ∈k l₂ ∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂ with ∈k-dec k l₁ ... | yes k∈kl₁ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁)) ... | no k∉kl₁ with ∈k-dec k l₂ ... | yes k∈kl₂ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂)) ... | no k∉kl₂ = (k∉kl₁ , k∉kl₂) insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} → ¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x) rewrite sym k,v=x with ≡-dec-A k' k ... | yes k'≡k = ⊥-elim (k≢k' (sym k'≡k)) ... | no _ = here refl insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs) with ≡-dec-A k' k'' ... | yes _ = there k,v∈xs ... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs) union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂ union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ = let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂ in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂ union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ = insert-preserves-∈ k≢k' k,v∈mxs₁l where k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂ k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁)) ... | no k≢k' = k≢k' union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂ rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' = insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂) insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l) insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'') rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v'' with ≡-dec-A k' k' ... | yes _ = here refl ... | no k≢k' = ⊥-elim (k≢k' refl) insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs) with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs)) ... | no k≢k' = there (insert-combines uxs k,v'∈xs) union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂ union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂ rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) = insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂) union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ = insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂) where k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁)) ... | no k≢k' = k≢k' update : A → B → List (A × B) → List (A × B) update k v [] = [] update k v ((k' , v') ∷ xs) with ≡-dec-A k k' ... | yes _ = (k' , f v v') ∷ xs ... | no _ = (k' , v') ∷ update k v xs updates : List (A × B) → List (A × B) → List (A × B) updates l₁ l₂ = foldr update l₂ l₁ restrict : List (A × B) → List (A × B) → List (A × B) restrict l [] = [] restrict l ((k' , v') ∷ xs) with ∈k-dec k' l ... | yes _ = (k' , v') ∷ restrict l xs ... | no _ = restrict l xs intersect : List (A × B) → List (A × B) → List (A × B) intersect l₁ l₂ = restrict l₁ (updates l₁ l₂) update-keys : ∀ {k : A} {v : B} {l : List (A × B)} → keys l ≡ keys (update k v l) update-keys {l = []} = refl update-keys {k} {v} {l = (k' , v') ∷ xs} with ≡-dec-A k k' ... | yes _ = refl ... | no _ rewrite update-keys {k} {v} {xs} = refl updates-keys : ∀ {l₁ l₂ : List (A × B)} → keys l₂ ≡ keys (updates l₁ l₂) updates-keys {[]} = refl updates-keys {(k , v) ∷ xs} {l₂} rewrite updates-keys {xs} {l₂} rewrite update-keys {k} {v} {updates xs l₂} = refl update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} → Unique (keys l) → Unique (keys (update k v l )) update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (updates l₁ l₂)) updates-preserve-Unique {[]} u = u updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u) restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} → All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂)) restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂ restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs) with ∈k-dec k' l₁ ... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs ... | no _ = restrict-preserves-k≢ k≢xs restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (restrict l₁ l₂)) restrict-preserves-Unique {l₁} {[]} _ = Utils.empty restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs) with ∈k-dec k l₁ ... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs) ... | no _ = restrict-preserves-Unique uxs intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} → Unique (keys l₂) → Unique (keys (intersect l₁ l₂)) intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u) updates-preserve-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k updates l₁ l₂ updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂ restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} → k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂) restrict-needs-both {k} {l₁} {[]} () restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂ with ∈k-dec k' l₁ | k∈l₁l₂ ... | yes k'∈kl₁ | here k≡k' rewrite k≡k' = (k'∈kl₁ , here refl) ... | yes _ | there k∈l₁xs = let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs in (k∈kl₁ , there k∈kxs) ... | no k'∉kl₁ | k∈l₁xs = let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs in (k∈kl₁ , there k∈kxs) restrict-subset-keys : ∀ {l₁ l₂ : List (A × B)} → All (λ k → k ∈k l₁) (keys l₂) → keys l₂ ≡ keys (restrict l₁ l₂) restrict-subset-keys {l₁} {[]} _ = refl restrict-subset-keys {l₁} {(k , v) ∷ l₂'} (k∈kl₁ ∷ kl₂'⊆kl₁) with ∈k-dec k l₁ ... | no k∉kl₁ = ⊥-elim (k∉kl₁ k∈kl₁) ... | yes _ rewrite restrict-subset-keys {l₁} {l₂'} kl₂'⊆kl₁ = refl restrict-equal-keys : ∀ {l₁ l₂ : List (A × B)} → keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (restrict l₁ l₂) restrict-equal-keys {l₁} {l₂} kl₁≡kl₂ with subst (λ l → All (λ k → k ∈ l) (keys l₂)) (sym kl₁≡kl₂) (All-x∈xs (keys l₂)) ... | kl₂⊆kl₁ = trans kl₁≡kl₂ (restrict-subset-keys {l₁} {l₂} kl₂⊆kl₁) intersect-equal-keys : ∀ {l₁ l₂ : List (A × B)} → keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (intersect l₁ l₂) intersect-equal-keys {l₁} {l₂} kl₁≡kl₂ rewrite restrict-equal-keys (trans kl₁≡kl₂ (updates-keys {l₁} {l₂})) rewrite updates-keys {l₁} {l₂} = refl restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂ restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ = let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁ restrict-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k restrict l₁ l₂ restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ = let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂ intersect-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → ¬ k ∈k intersect l₁ l₂ intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂} intersect-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₂ → ¬ k ∈k intersect l₁ l₂ intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ ) restrict-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ restrict l₁ l₂ restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') ∷ xs} k∈kl₁ (here k,v≡k',v') rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' with ∈k-dec k' l₁ ... | yes _ = here refl ... | no k'∉kl₁ = ⊥-elim (k'∉kl₁ k∈kl₁) restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') ∷ xs} k∈kl₁ (there k,v∈xs) with ∈k-dec k' l₁ ... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs) ... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} → ¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'') rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v'' with ≡-dec-A k' k'' ... | yes k'≡k'' = ⊥-elim (k≢k' (sym k'≡k'')) ... | no _ = here refl update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs) with ≡-dec-A k' k'' ... | yes _ = there k,v∈xs ... | no _ = there (update-preserves-∈ k≢k' k,v∈xs) updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} → ¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂ updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂ updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ = update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂) update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} → Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'') rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v'' with ≡-dec-A k' k' ... | yes _ = here refl ... | no k'≢k' = ⊥-elim (k'≢k' refl) update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs) with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs)) ... | no _ = there (update-combines uxs k,v∈xs) updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂ updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂ rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' = update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂) updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ = update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂) where k≢k' : ¬ k ≡ k' k≢k' with ≡-dec-A k k' ... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs)) ... | no k≢k' = k≢k' intersect-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} → Unique (keys l₁) → Unique (keys l₂) → (k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ intersect l₁ l₂ intersect-combines u₁ u₂ k,v₁∈l₁ k,v₂∈l₂ = restrict-preserves-∈₂ (∈-cong proj₁ k,v₁∈l₁) (updates-combine u₁ u₂ k,v₁∈l₁ k,v₂∈l₂) Map : Set (a ⊔ℓ b) Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l)) empty : Map empty = ([] , Utils.empty) keys : Map → List A keys (kvs , _) = ImplKeys.keys kvs _∈_ : (A × B) → Map → Set (a ⊔ℓ b) _∈_ p (kvs , _) = MemProp._∈_ p kvs _∈k_ : A → Map → Set a _∈k_ k m = MemProp._∈_ k (keys m) locate : ∀ {k : A} {m : Map} → k ∈k m → Σ B (λ v → (k , v) ∈ m) locate k∈km = locate-impl k∈km -- `forget` and `∈k-dec` are defined this way because ∈ for maps uses -- projection, so the full map can't be guessed. On the other hand, list can -- be guessed. forget : ∀ {k : A} {v : B} {l : List (A × B)} → (k , v) ∈ˡ l → k ∈ˡ (ImplKeys.keys l) forget = ∈-cong proj₁ Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v' Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m open ImplRelation using () renaming (subset to subset-impl) public _⊆_ : Map → Map → Set (a ⊔ℓ b) _⊆_ (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂ ⊆-refl : (m : Map) → m ⊆ m ⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m)) ⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃ ⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = let (v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ (v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂ in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) _≈_ : Map → Map → Set (a ⊔ℓ b) _≈_ m₁ m₂ = m₁ ⊆ m₂ × m₂ ⊆ m₁ ≈-equiv : IsEquivalence Map _≈_ ≈-equiv = record { ≈-refl = λ {m} → (⊆-refl m , ⊆-refl m) ; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) → (m₂⊆m₁ , m₁⊆m₂) ; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) → ( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃ , ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁ ) } data Expr : Set (a ⊔ℓ b) where `_ : Map → Expr _∪_ : Expr → Expr → Expr _∩_ : Expr → Expr → Expr open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys; insert-preserves-Unique) renaming (insert to insert-impl; union to union-impl) open ImplInsert _⊓₂_ using (intersect-preserves-Unique; intersect-equal-keys) renaming (intersect to intersect-impl) insert : A → B → Map → Map insert k v (l , uks) = (insert-impl k v l , insert-preserves-Unique uks) _⊔_ : Map → Map → Map _⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂) _⊓_ : Map → Map → Map _⊓_ (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂) open ImplInsert _⊔₂_ using ( union-combines ; union-preserves-∈₁ ; union-preserves-∈₂ ; union-preserves-∉ ; union-preserves-∈k₁ ) ⊔-combines : ∀ {k : A} {v₁ v₂ : B} {m₁ m₂ : Map} → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → (k , v₁ ⊔₂ v₂) ∈ (m₁ ⊔ m₂) ⊔-combines {k} {v₁} {v₂} {kvs₁ , u₁} {kvs₂ , u₂} k,v₁∈m₁ k,v₂∈m₂ = union-combines u₁ u₂ k,v₁∈m₁ k,v₂∈m₂ open ImplInsert _⊓₂_ using ( restrict-needs-both ; updates ; intersect-preserves-∉₁ ; intersect-preserves-∉₂ ; intersect-combines ) ⟦_⟧ : Expr -> Map ⟦ ` m ⟧ = m ⟦ e₁ ∪ e₂ ⟧ = ⟦ e₁ ⟧ ⊔ ⟦ e₂ ⟧ ⟦ e₁ ∩ e₂ ⟧ = ⟦ e₁ ⟧ ⊓ ⟦ e₂ ⟧ data Provenance (k : A) : B → Expr → Set (a ⊔ℓ b) where single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m) in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂) in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂) bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (v₁ ⊔₂ v₂) (e₁ ∪ e₂) bothⁱ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (v₁ ⊓₂ v₂) (e₁ ∩ e₂) Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧)) Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate-impl k∈km in (v , (single k,v∈m , k,v∈m)) Expr-Provenance k (e₁ ∪ e₂) k∈ke₁e₂ with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧) ... | yes k∈ke₁ | yes k∈ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (v₁ ⊔₂ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)) ... | yes k∈ke₁ | no k∉ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂)) ... | no k∉ke₁ | yes k∈ke₂ = let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂)) ... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂) Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂ with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧) ... | yes k∈ke₁ | yes k∈ke₂ = let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁ (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂ in (v₁ ⊓₂ v₂ , (bothⁱ g₁ g₂ , intersect-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)) ... | yes k∈ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂) ... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂) ... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂) Expr-Provenance-≡ : ∀ {k : A} {v : B} (e : Expr) → (k , v) ∈ ⟦ e ⟧ → Provenance k v e Expr-Provenance-≡ {k} {v} e k,v∈e with (v' , (p , k,v'∈e)) ← Expr-Provenance k e (forget k,v∈e) rewrite Map-functional {m = ⟦ e ⟧} k,v∈e k,v'∈e = p module _ (≈₂-dec : IsDecidable _≈₂_) where private module _ where data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂ mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂ fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂ SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂) SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) = let (v , k,v∈m₁) = locate-impl k∈km₁ in no (λ m₁⊆m₂ → let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ in k∉km₂ (forget k,v'∈m₂)) SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) = no (λ m₁⊆m₂ → let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁ in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst... SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂ compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂ compute-SubsetInfo ([] , _) m₂ = fine (λ k v ()) compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂) with compute-SubsetInfo (xs₁ , uxs₁) m₂ ... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂ ... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ = mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂ ... | fine xs₁⊆m₂ with ∈k-dec k l₂ ... | no k∉km₂ = extra k (here refl) k∉km₂ ... | yes k∈km₂ with locate-impl k∈km₂ ... | (v' , k,v'∈m₂) with ≈₂-dec v v' ... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v' ... | yes v≈v' = fine m₁⊆m₂ where m₁⊆m₂ : m₁ ⊆ m₂ m₁⊆m₂ k' v'' (here k,v≡k',v'') rewrite cong proj₁ k,v≡k',v'' rewrite cong proj₂ k,v≡k',v'' = (v' , (v≈v' , k,v'∈m₂)) m₁⊆m₂ k' v'' (there k,v≡k',v'') = xs₁⊆m₂ k' v'' k,v≡k',v'' ⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂) ⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂) ≈-dec : ∀ m₁ m₂ → Dec (m₁ ≈ m₂) ≈-dec m₁ m₂ with ⊆-dec m₁ m₂ | ⊆-dec m₂ m₁ ... | yes m₁⊆m₂ | yes m₂⊆m₁ = yes (m₁⊆m₂ , m₂⊆m₁) ... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) → m₂̷⊆m₁ m₂⊆m₁) ... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) → m₁̷⊆m₂ m₁⊆m₂) private module I⊔ = ImplInsert _⊔₂_ private module I⊓ = ImplInsert _⊓₂_ ≈-⊔-cong : ∀ {m₁ m₂ m₃ m₄ : Map} → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊔ m₃) ≈ (m₂ ⊔ m₄) ≈-⊔-cong {m₁} {m₂} {m₃} {m₄} (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) = ( ⊔-⊆ m₁ m₂ m₃ m₄ (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) , ⊔-⊆ m₂ m₁ m₄ m₃ (m₂⊆m₁ , m₁⊆m₂) (m₄⊆m₃ , m₃⊆m₄) ) where ≈-∉-cong : ∀ {m₁ m₂ : Map} {k : A} → m₁ ≈ m₂ → ¬ k ∈k m₁ → ¬ k ∈k m₂ ≈-∉-cong (m₁⊆m₂ , m₂⊆m₁) k∉km₁ k∈km₂ = let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂ (_ , (_ , k,v₁∈m₁)) = m₂⊆m₁ _ v₂ k,v₂∈m₂ in k∉km₁ (∈-cong proj₁ k,v₁∈m₁) ⊔-⊆ : ∀ (m₁ m₂ m₃ m₄ : Map) → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊔ m₃) ⊆ (m₂ ⊔ m₄) ⊔-⊆ m₁ m₂ m₃ m₄ m₁≈m₂ m₃≈m₄ k v k,v∈m₁m₃ with Expr-Provenance-≡ ((` m₁) ∪ (` m₃)) k,v∈m₁m₃ ... | bothᵘ (single {v₁} v₁∈m₁) (single {v₃} v₃∈m₃) = let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁ (v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃ in (v₂ ⊔₂ v₄ , (≈₂-⊔₂-cong v₁≈v₂ v₃≈v₄ , I⊔.union-combines (proj₂ m₂) (proj₂ m₄) k,v₂∈m₂ k,v₄∈m₄)) ... | in₁ (single {v₁} v₁∈m₁) k∉km₃ = let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁ k∉km₄ = ≈-∉-cong {m₃} {m₄} m₃≈m₄ k∉km₃ in (v₂ , (v₁≈v₂ , I⊔.union-preserves-∈₁ (proj₂ m₂) k,v₂∈m₂ k∉km₄)) ... | in₂ k∉km₁ (single {v₃} v₃∈m₃) = let (v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃ k∉km₂ = ≈-∉-cong {m₁} {m₂} m₁≈m₂ k∉km₁ in (v₄ , (v₃≈v₄ , I⊔.union-preserves-∈₂ k∉km₂ k,v₄∈m₄)) ≈-⊓-cong : ∀ {m₁ m₂ m₃ m₄ : Map} → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊓ m₃) ≈ (m₂ ⊓ m₄) ≈-⊓-cong {m₁} {m₂} {m₃} {m₄} (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) = ( ⊓-⊆ m₁ m₂ m₃ m₄ (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) , ⊓-⊆ m₂ m₁ m₄ m₃ (m₂⊆m₁ , m₁⊆m₂) (m₄⊆m₃ , m₃⊆m₄) ) where ⊓-⊆ : ∀ (m₁ m₂ m₃ m₄ : Map) → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊓ m₃) ⊆ (m₂ ⊓ m₄) ⊓-⊆ m₁ m₂ m₃ m₄ m₁≈m₂ m₃≈m₄ k v k,v∈m₁m₃ with Expr-Provenance-≡ ((` m₁) ∩ (` m₃)) k,v∈m₁m₃ ... | bothⁱ (single {v₁} v₁∈m₁) (single {v₃} v₃∈m₃) = let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁ (v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃ in (v₂ ⊓₂ v₄ , (≈₂-⊓₂-cong v₁≈v₂ v₃≈v₄ , I⊓.intersect-combines (proj₂ m₂) (proj₂ m₄) k,v₂∈m₂ k,v₄∈m₄)) ⊔-idemp : ∀ (m : Map) → (m ⊔ m) ≈ m ⊔-idemp m@(l , u) = (mm-m-⊆ , m-mm-⊆) where mm-m-⊆ : (m ⊔ m) ⊆ m mm-m-⊆ k v k,v∈mm with Expr-Provenance-≡ ((` m) ∪ (` m)) k,v∈mm ... | bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) rewrite Map-functional {m = m} v'∈m v''∈m = (v'' , (⊔₂-idemp v'' , v''∈m)) ... | in₁ (single {v'} v'∈m) k∉km = ⊥-elim (k∉km (∈-cong proj₁ v'∈m)) ... | in₂ k∉km (single {v''} v''∈m) = ⊥-elim (k∉km (∈-cong proj₁ v''∈m)) m-mm-⊆ : m ⊆ (m ⊔ m) m-mm-⊆ k v k,v∈m = (v ⊔₂ v , (≈₂-sym (⊔₂-idemp v) , I⊔.union-combines u u k,v∈m k,v∈m)) ⊔-comm : ∀ (m₁ m₂ : Map) → (m₁ ⊔ m₂) ≈ (m₂ ⊔ m₁) ⊔-comm m₁ m₂ = (⊔-comm-⊆ m₁ m₂ , ⊔-comm-⊆ m₂ m₁) where ⊔-comm-⊆ : ∀ (m₁ m₂ : Map) → (m₁ ⊔ m₂) ⊆ (m₂ ⊔ m₁) ⊔-comm-⊆ m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂ with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈m₁m₂ ... | bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) = (v₂ ⊔₂ v₁ , (⊔₂-comm v₁ v₂ , I⊔.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁)) ... | in₁ {v₁} (single v₁∈m₁) k∉km₂ = (v₁ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉km₂ v₁∈m₁)) ... | in₂ {v₂} k∉km₁ (single v₂∈m₂) = (v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁)) ⊔-assoc : ∀ (m₁ m₂ m₃ : Map) → ((m₁ ⊔ m₂) ⊔ m₃) ≈ (m₁ ⊔ (m₂ ⊔ m₃)) ⊔-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (⊔-assoc₁ , ⊔-assoc₂) where ⊔-assoc₁ : ((m₁ ⊔ m₂) ⊔ m₃) ⊆ (m₁ ⊔ (m₂ ⊔ m₃)) ⊔-assoc₁ k v k,v∈m₁₂m₃ with Expr-Provenance-≡ (((` m₁) ∪ (` m₂)) ∪ (` m₃)) k,v∈m₁₂m₃ ... | in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) = let (k∉ke₁ , k∉ke₂) = I⊔.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂ in (v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-preserves-∈₂ k∉ke₂ v₃∈e₃))) ... | in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ = (v₂ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃))) ... | bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) = (v₂ ⊔₂ v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) ... | in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ = (v₁ , (≈₂-refl , I⊔.union-preserves-∈₁ u₁ v₁∈e₁ (I⊔.union-preserves-∉ k∉ke₂ k∉ke₃))) ... | bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) = (v₁ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-preserves-∈₂ k∉ke₂ v₃∈e₃))) ... | in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃ = (v₁ ⊔₂ v₂ , (≈₂-refl , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃))) ... | bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) = (v₁ ⊔₂ (v₂ ⊔₂ v₃) , (⊔₂-assoc v₁ v₂ v₃ , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) ⊔-assoc₂ : (m₁ ⊔ (m₂ ⊔ m₃)) ⊆ ((m₁ ⊔ m₂) ⊔ m₃) ⊔-assoc₂ k v k,v∈m₁m₂₃ with Expr-Provenance-≡ ((` m₁) ∪ ((` m₂) ∪ (` m₃))) k,v∈m₁m₂₃ ... | in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) = (v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ (I⊔.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃)) ... | in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) = (v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃)) ... | in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) = (v₂ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃)) ... | in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ = let (k∉ke₂ , k∉ke₃) = I⊔.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃ in (v₁ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃)) ... | bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) = (v₁ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃)) ... | bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) = (v₁ ⊔₂ v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃)) ... | bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) = ((v₁ ⊔₂ v₂) ⊔₂ v₃ , (≈₂-sym (⊔₂-assoc v₁ v₂ v₃) , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃)) ⊓-idemp : ∀ (m : Map) → (m ⊓ m) ≈ m ⊓-idemp m@(l , u) = (mm-m-⊆ , m-mm-⊆) where mm-m-⊆ : (m ⊓ m) ⊆ m mm-m-⊆ k v k,v∈mm with Expr-Provenance-≡ ((` m) ∩ (` m)) k,v∈mm ... | bothⁱ (single {v'} v'∈m) (single {v''} v''∈m) rewrite Map-functional {m = m} v'∈m v''∈m = (v'' , (⊓₂-idemp v'' , v''∈m)) m-mm-⊆ : m ⊆ (m ⊓ m) m-mm-⊆ k v k,v∈m = (v ⊓₂ v , (≈₂-sym (⊓₂-idemp v) , I⊓.intersect-combines u u k,v∈m k,v∈m)) ⊓-comm : ∀ (m₁ m₂ : Map) → (m₁ ⊓ m₂) ≈ (m₂ ⊓ m₁) ⊓-comm m₁ m₂ = (⊓-comm-⊆ m₁ m₂ , ⊓-comm-⊆ m₂ m₁) where ⊓-comm-⊆ : ∀ (m₁ m₂ : Map) → (m₁ ⊓ m₂) ⊆ (m₂ ⊓ m₁) ⊓-comm-⊆ m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂ with Expr-Provenance-≡ ((` m₁) ∩ (` m₂)) k,v∈m₁m₂ ... | bothⁱ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) = (v₂ ⊓₂ v₁ , (⊓₂-comm v₁ v₂ , I⊓.intersect-combines u₂ u₁ v₂∈m₂ v₁∈m₁)) ⊓-assoc : ∀ (m₁ m₂ m₃ : Map) → ((m₁ ⊓ m₂) ⊓ m₃) ≈ (m₁ ⊓ (m₂ ⊓ m₃)) ⊓-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (⊓-assoc₁ , ⊓-assoc₂) where ⊓-assoc₁ : ((m₁ ⊓ m₂) ⊓ m₃) ⊆ (m₁ ⊓ (m₂ ⊓ m₃)) ⊓-assoc₁ k v k,v∈m₁₂m₃ with Expr-Provenance-≡ (((` m₁) ∩ (` m₂)) ∩ (` m₃)) k,v∈m₁₂m₃ ... | bothⁱ (bothⁱ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) = (v₁ ⊓₂ (v₂ ⊓₂ v₃) , (⊓₂-assoc v₁ v₂ v₃ , I⊓.intersect-combines u₁ (I⊓.intersect-preserves-Unique {l₂} {l₃} u₃) v₁∈e₁ (I⊓.intersect-combines u₂ u₃ v₂∈e₂ v₃∈e₃))) ⊓-assoc₂ : (m₁ ⊓ (m₂ ⊓ m₃)) ⊆ ((m₁ ⊓ m₂) ⊓ m₃) ⊓-assoc₂ k v k,v∈m₁m₂₃ with Expr-Provenance-≡ ((` m₁) ∩ ((` m₂) ∩ (` m₃))) k,v∈m₁m₂₃ ... | bothⁱ (single {v₁} v₁∈e₁) (bothⁱ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) = ((v₁ ⊓₂ v₂) ⊓₂ v₃ , (≈₂-sym (⊓₂-assoc v₁ v₂ v₃) , I⊓.intersect-combines (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) u₃ (I⊓.intersect-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃)) absorb-⊓-⊔ : ∀ (m₁ m₂ : Map) → (m₁ ⊓ (m₁ ⊔ m₂)) ≈ m₁ absorb-⊓-⊔ m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (absorb-⊓-⊔¹ , absorb-⊓-⊔²) where absorb-⊓-⊔¹ : (m₁ ⊓ (m₁ ⊔ m₂)) ⊆ m₁ absorb-⊓-⊔¹ k v k,v∈m₁m₁₂ with Expr-Provenance-≡ ((` m₁) ∩ ((` m₁) ∪ (` m₂))) k,v∈m₁m₁₂ ... | bothⁱ (single {v₁} k,v₁∈m₁) (bothᵘ (single {v₁'} k,v₁'∈m₁) (single {v₂} v₂∈m₂)) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ = (v₁' , (absorb-⊓₂-⊔₂ v₁' v₂ , k,v₁'∈m₁)) ... | bothⁱ (single {v₁} k,v₁∈m₁) (in₁ (single {v₁'} k,v₁'∈m₁) _) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ = (v₁' , (⊓₂-idemp v₁' , k,v₁'∈m₁)) ... | bothⁱ (single {v₁} k,v₁∈m₁) (in₂ k∉m₁ _ ) = ⊥-elim (k∉m₁ (∈-cong proj₁ k,v₁∈m₁)) absorb-⊓-⊔² : m₁ ⊆ (m₁ ⊓ (m₁ ⊔ m₂)) absorb-⊓-⊔² k v k,v∈m₁ with ∈k-dec k l₂ ... | yes k∈km₂ = let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂ in (v ⊓₂ (v ⊔₂ v₂) , (≈₂-sym (absorb-⊓₂-⊔₂ v v₂) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂))) ... | no k∉km₂ = (v ⊓₂ v , (≈₂-sym (⊓₂-idemp v) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-preserves-∈₁ u₁ k,v∈m₁ k∉km₂))) absorb-⊔-⊓ : ∀ (m₁ m₂ : Map) → (m₁ ⊔ (m₁ ⊓ m₂)) ≈ m₁ absorb-⊔-⊓ m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (absorb-⊔-⊓¹ , absorb-⊔-⊓²) where absorb-⊔-⊓¹ : (m₁ ⊔ (m₁ ⊓ m₂)) ⊆ m₁ absorb-⊔-⊓¹ k v k,v∈m₁m₁₂ with Expr-Provenance-≡ ((` m₁) ∪ ((` m₁) ∩ (` m₂))) k,v∈m₁m₁₂ ... | bothᵘ (single {v₁} k,v₁∈m₁) (bothⁱ (single {v₁'} k,v₁'∈m₁) (single {v₂} k,v₂∈m₂)) rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ = (v₁' , (absorb-⊔₂-⊓₂ v₁' v₂ , k,v₁'∈m₁)) ... | in₁ (single {v₁} k,v₁∈m₁) k∉km₁₂ = (v₁ , (≈₂-refl , k,v₁∈m₁)) ... | in₂ k∉km₁ (bothⁱ (single {v₁'} k,v₁'∈m₁) (single {v₂} k,v₂∈m₂)) = ⊥-elim (k∉km₁ (∈-cong proj₁ k,v₁'∈m₁)) absorb-⊔-⊓² : m₁ ⊆ (m₁ ⊔ (m₁ ⊓ m₂)) absorb-⊔-⊓² k v k,v∈m₁ with ∈k-dec k l₂ ... | yes k∈km₂ = let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂ in (v ⊔₂ (v ⊓₂ v₂) , (≈₂-sym (absorb-⊔₂-⊓₂ v v₂) , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂))) ... | no k∉km₂ = (v , (≈₂-refl , I⊔.union-preserves-∈₁ u₁ k,v∈m₁ (I⊓.intersect-preserves-∉₂ {k} {l₁} {l₂} k∉km₂))) isUnionSemilattice : IsSemilattice Map _≈_ _⊔_ isUnionSemilattice = record { ≈-equiv = ≈-equiv ; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ → ≈-⊔-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ ; ⊔-assoc = ⊔-assoc ; ⊔-comm = ⊔-comm ; ⊔-idemp = ⊔-idemp } isIntersectSemilattice : IsSemilattice Map _≈_ _⊓_ isIntersectSemilattice = record { ≈-equiv = ≈-equiv ; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ → ≈-⊓-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ ; ⊔-assoc = ⊓-assoc ; ⊔-comm = ⊓-comm ; ⊔-idemp = ⊓-idemp } isLattice : IsLattice Map _≈_ _⊔_ _⊓_ isLattice = record { joinSemilattice = isUnionSemilattice ; meetSemilattice = isIntersectSemilattice ; absorb-⊔-⊓ = absorb-⊔-⊓ ; absorb-⊓-⊔ = absorb-⊓-⊔ } open IsLattice isLattice using (_≼_) public lattice : Lattice Map lattice = record { _≈_ = _≈_ ; _⊔_ = _⊔_ ; _⊓_ = _⊓_ ; isLattice = isLattice } ⊔-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊔ m₂) ⊔-equal-keys km₁≡km₂ = union-equal-keys km₁≡km₂ ⊓-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊓ m₂) ⊓-equal-keys km₁≡km₂ = intersect-equal-keys km₁≡km₂ private module _ where open MemProp using (_∈_) transform : List (A × B) → List A → (A → B) → List (A × B) transform [] _ _ = [] transform ((k , v) ∷ xs) ks f with k∈-dec k ks ... | yes _ = (k , f k) ∷ transform xs ks f ... | no _ = (k , v) ∷ transform xs ks f transform-keys-≡ : ∀ (l : List (A × B)) (ks : List A) (f : A → B) → ImplKeys.keys l ≡ ImplKeys.keys (transform l ks f) transform-keys-≡ [] ks f = refl transform-keys-≡ ((k , v) ∷ xs) ks f with k∈-dec k ks ... | yes _ rewrite transform-keys-≡ xs ks f = refl ... | no _ rewrite transform-keys-≡ xs ks f = refl transform-∉k-forward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} → ¬ k ∈ˡ ImplKeys.keys l → ¬ k ∈ˡ ImplKeys.keys (transform l ks f) transform-∉k-forward {l} ks f k∉kl rewrite transform-keys-≡ l ks f = k∉kl transform-∈k-forward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} → k ∈ˡ ImplKeys.keys l → k ∈ˡ ImplKeys.keys (transform l ks f) transform-∈k-forward {l} ks f k∈kl rewrite transform-keys-≡ l ks f = k∈kl transform-∈k-backward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} → k ∈ˡ ImplKeys.keys (transform l ks f) → k ∈ˡ ImplKeys.keys l transform-∈k-backward {l} ks f k∈kt rewrite transform-keys-≡ l ks f = k∈kt transform-k∈ks : ∀ (l : List (A × B)) {ks : List A} (f : A → B) {k : A} → k ∈ˡ ks → k ∈ˡ ImplKeys.keys (transform l ks f) → (k , f k) ∈ˡ transform l ks f transform-k∈ks [] _ _ () transform-k∈ks ((k' , v) ∷ xs) {ks} f {k} k∈ks k∈kl with k∈-dec k' ks | k∈kl ... | yes _ | here refl = here refl ... | no k∉ks | here refl = ⊥-elim (k∉ks k∈ks) ... | yes _ | there k∈kxs = there (transform-k∈ks xs f k∈ks k∈kxs) ... | no _ | there k∈kxs = there (transform-k∈ks xs f k∈ks k∈kxs) transform-k∉ks-forward : ∀ {l : List (A × B)} {ks : List A} (f : A → B) {k : A} {v : B} → ¬ k ∈ˡ ks → (k , v) ∈ˡ l → (k , v) ∈ˡ transform l ks f transform-k∉ks-forward {[]} _ _ () transform-k∉ks-forward {(k' , v') ∷ xs} {ks} f {k} {v} k∉ks k,v∈l with k∈-dec k' ks | k,v∈l ... | yes k∈ks | here refl = ⊥-elim (k∉ks k∈ks) ... | no k∉ks | here refl = here refl ... | yes _ | there k,v∈xs = there (transform-k∉ks-forward f k∉ks k,v∈xs) ... | no _ | there k,v∈xs = there (transform-k∉ks-forward f k∉ks k,v∈xs) transform-k∉ks-backward : ∀ {l : List (A × B)} {ks : List A} (f : A → B) {k : A} {v : B} → ¬ k ∈ˡ ks → (k , v) ∈ˡ transform l ks f → (k , v) ∈ˡ l transform-k∉ks-backward {[]} _ _ () transform-k∉ks-backward {(k' , v') ∷ xs} {ks} f {k} {v} k∉ks k,v∈tl with k∈-dec k' ks | k,v∈tl ... | yes k∈ks | here refl = ⊥-elim (k∉ks k∈ks) ... | no k∉ks | here refl = here refl ... | yes _ | there k,v∈txs = there (transform-k∉ks-backward f k∉ks k,v∈txs) ... | no _ | there k,v∈txs = there (transform-k∉ks-backward f k∉ks k,v∈txs) _updating_via_ : Map → List A → (A → B) → Map _updating_via_ (kvs , uks) ks f = ( transform kvs ks f , subst Unique (transform-keys-≡ kvs ks f) uks ) updating-via-keys-≡ : ∀ (m : Map) (ks : List A) (f : A → B) → keys m ≡ keys (m updating ks via f) updating-via-keys-≡ (l , _) = transform-keys-≡ l updating-via-∉k-forward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} → ¬ k ∈k m → ¬ k ∈k (m updating ks via f) updating-via-∉k-forward m = transform-∉k-forward updating-via-∈k-forward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} → k ∈k m → k ∈k (m updating ks via f) updating-via-∈k-forward m = transform-∈k-forward updating-via-∈k-backward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} → k ∈k (m updating ks via f) → k ∈k m updating-via-∈k-backward m = transform-∈k-backward updating-via-k∈ks : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} → k ∈ˡ ks → k ∈k (m updating ks via f) → (k , f k) ∈ (m updating ks via f) updating-via-k∈ks m = transform-k∈ks (proj₁ m) updating-via-k∈ks-forward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} → k ∈ˡ ks → k ∈k m → (k , f k) ∈ (m updating ks via f) updating-via-k∈ks-forward m {ks} f k∈ks k∈km rewrite transform-keys-≡ (proj₁ m) ks f = transform-k∈ks (proj₁ m) f k∈ks k∈km updating-via-k∈ks-≡ : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} → k ∈ˡ ks → (k , v) ∈ (m updating ks via f)→ v ≡ f k updating-via-k∈ks-≡ m {ks} f k∈ks k,v∈um with updating-via-k∈ks m f k∈ks (forget k,v∈um) ... | k,fk∈um = Map-functional {m = (m updating ks via f)} k,v∈um k,fk∈um updating-via-k∉ks-forward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} → ¬ k ∈ˡ ks → (k , v) ∈ m → (k , v) ∈ (m updating ks via f) updating-via-k∉ks-forward m = transform-k∉ks-forward updating-via-k∉ks-backward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} → ¬ k ∈ˡ ks → (k , v) ∈ (m updating ks via f) → (k , v) ∈ m updating-via-k∉ks-backward m = transform-k∉ks-backward module _ {l} {L : Set l} {_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L} (lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where open IsLattice lL using () renaming (_≼_ to _≼ˡ_) module _ (f : L → Map) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f) (g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic _≼ˡ_ _≼₂_ (g k)) (ks : List A) where updater : L → A → B updater l k = g k l f' : L → Map f' l = (f l) updating ks via (updater l) f'-Monotonic : Monotonic _≼ˡ_ _≼_ f' f'-Monotonic {l₁} {l₂} l₁≼l₂ = (f'l₁f'l₂⊆f'l₂ , f'l₂⊆f'l₁f'l₂) where fl₁fl₂⊆fl₂ = proj₁ (f-Monotonic l₁≼l₂) fl₂⊆fl₁fl₂ = proj₂ (f-Monotonic l₁≼l₂) f'l₁f'l₂⊆f'l₂ : ((f' l₁) ⊔ (f' l₂)) ⊆ f' l₂ f'l₁f'l₂⊆f'l₂ k v k,v∈f'l₁f'l₂ with Expr-Provenance-≡ ((` (f' l₁)) ∪ (` (f' l₂))) k,v∈f'l₁f'l₂ ... | in₁ (single k,v∈f'l₁) k∉kf'l₂ = let k∈kfl₁ = updating-via-∈k-backward (f l₁) ks (updater l₁) (forget k,v∈f'l₁) k∈kfl₁fl₂ = union-preserves-∈k₁ {l₁ = proj₁ (f l₁)} {l₂ = proj₁ (f l₂)} k∈kfl₁ (v' , k,v'∈fl₁l₂) = locate {m = (f l₁ ⊔ f l₂)} k∈kfl₁fl₂ (v'' , (v'≈v'' , k,v''∈fl₂)) = fl₁fl₂⊆fl₂ k v' k,v'∈fl₁l₂ k∈kf'l₂ = updating-via-∈k-forward (f l₂) ks (updater l₂) (forget k,v''∈fl₂) in ⊥-elim (k∉kf'l₂ k∈kf'l₂) ... | in₂ k∉kf'l₁ (single k,v'∈f'l₂) = (v , (IsLattice.≈-refl lB , k,v'∈f'l₂)) ... | bothᵘ (single {v₁} k,v₁∈f'l₁) (single {v₂} k,v₂∈f'l₂) with k∈-dec k ks ... | yes k∈ks with refl ← updating-via-k∈ks-≡ (f l₁) (updater l₁) k∈ks k,v₁∈f'l₁ with refl ← updating-via-k∈ks-≡ (f l₂) (updater l₂) k∈ks k,v₂∈f'l₂ = (updater l₂ k , (g-Monotonicʳ k l₁≼l₂ , k,v₂∈f'l₂)) ... | no k∉ks = let k,v₁∈fl₁ = updating-via-k∉ks-backward (f l₁) (updater l₁) k∉ks k,v₁∈f'l₁ k,v₂∈fl₂ = updating-via-k∉ks-backward (f l₂) (updater l₂) k∉ks k,v₂∈f'l₂ k,v₁v₂∈fl₁fl₂ = ⊔-combines {m₁ = f l₁} {m₂ = f l₂} k,v₁∈fl₁ k,v₂∈fl₂ (v' , (v'≈v₁v₂ , k,v'∈fl₂)) = fl₁fl₂⊆fl₂ k _ k,v₁v₂∈fl₁fl₂ k,v'∈f'l₂ = updating-via-k∉ks-forward (f l₂) (updater l₂) k∉ks k,v'∈fl₂ in (v' , (v'≈v₁v₂ , k,v'∈f'l₂)) f'l₂⊆f'l₁f'l₂ : f' l₂ ⊆ ((f' l₁) ⊔ (f' l₂)) f'l₂⊆f'l₁f'l₂ k v k,v∈f'l₂ with k∈kfl₂ ← updating-via-∈k-backward (f l₂) ks (updater l₂) (forget k,v∈f'l₂) with (v' , k,v'∈fl₂) ← locate {m = f l₂} k∈kfl₂ with (v'' , (v'≈v'' , k,v''∈fl₁fl₂)) ← fl₂⊆fl₁fl₂ k v' k,v'∈fl₂ with Expr-Provenance-≡ ((` (f l₁)) ∪ (` (f l₂))) k,v''∈fl₁fl₂ ... | in₁ (single k,v''∈fl₁) k∉kfl₂ = ⊥-elim (k∉kfl₂ k∈kfl₂) ... | in₂ k∉kfl₁ (single k,v''∈fl₂) = let k∉kf'l₁ = updating-via-∉k-forward (f l₁) ks (updater l₁) k∉kfl₁ in (v , (IsLattice.≈-refl lB , union-preserves-∈₂ k∉kf'l₁ k,v∈f'l₂)) ... | bothᵘ (single {v₁} k,v₁∈fl₁) (single {v₂} k,v₂∈fl₂) with k∈-dec k ks ... | yes k∈ks with refl ← updating-via-k∈ks-≡ (f l₂) (updater l₂) k∈ks k,v∈f'l₂ = let k,uv₁∈f'l₁ = updating-via-k∈ks-forward (f l₁) (updater l₁) k∈ks (forget k,v₁∈fl₁) k,uv₂∈f'l₂ = updating-via-k∈ks-forward (f l₂) (updater l₂) k∈ks (forget k,v₂∈fl₂) k,uv₁uv₂∈f'l₁f'l₂ = ⊔-combines {m₁ = f' l₁} {m₂ = f' l₂} k,uv₁∈f'l₁ k,uv₂∈f'l₂ in (updater l₁ k ⊔₂ updater l₂ k , (IsLattice.≈-sym lB (g-Monotonicʳ k l₁≼l₂) , k,uv₁uv₂∈f'l₁f'l₂)) ... | no k∉ks with k,v₁∈f'l₁ ← updating-via-k∉ks-forward (f l₁) (updater l₁) k∉ks k,v₁∈fl₁ with k,v₂∈f'l₂ ← updating-via-k∉ks-forward (f l₂) (updater l₂) k∉ks k,v₂∈fl₂ with k,v₁v₂∈f'l₁f'l₂ ← ⊔-combines {m₁ = f' l₁} {m₂ = f' l₂} k,v₁∈f'l₁ k,v₂∈f'l₂ with refl ← Map-functional {m = f' l₂} k,v∈f'l₂ k,v₂∈f'l₂ with refl ← Map-functional {m = f l₂} k,v'∈fl₂ k,v₂∈fl₂ = (v₁ ⊔₂ v , (v'≈v'' , k,v₁v₂∈f'l₁f'l₂)) _[_] : Map → List A → List B _[_] m [] = [] _[_] m (k ∷ ks) with ∈k-dec k (proj₁ m) ... | yes k∈km = proj₁ (locate {m = m} k∈km) ∷ (m [ ks ]) ... | no _ = m [ ks ] m₁≼m₂⇒m₁[k]≼m₂[k] : ∀ (m₁ m₂ : Map) {k : A} {v₁ v₂ : B} → m₁ ≼ m₂ → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → v₁ ≼₂ v₂ m₁≼m₂⇒m₁[k]≼m₂[k] m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂ with k,v₁v₂∈m₁m₂ ← ⊔-combines {m₁ = m₁} {m₂ = m₂} k,v₁∈m₁ k,v₂∈m₂ with (v' , (v₁v₂≈v' , k,v'∈m₂)) ← (proj₁ m₁≼m₂) _ _ k,v₁v₂∈m₁m₂ with refl ← Map-functional {m = m₂} k,v₂∈m₂ k,v'∈m₂ = v₁v₂≈v' m₁≼m₂⇒k∈km₁⇒k∈km₂ : ∀ (m₁ m₂ : Map) {k : A} → m₁ ≼ m₂ → k ∈k m₁ → k ∈k m₂ m₁≼m₂⇒k∈km₁⇒k∈km₂ m₁ m₂ m₁≼m₂ k∈km₁ = let k∈km₁m₂ = union-preserves-∈k₁ {l₁ = proj₁ m₁} {l₂ = proj₁ m₂} k∈km₁ (v , k,v∈m₁m₂) = locate {m = m₁ ⊔ m₂} k∈km₁m₂ (v' , (v≈v' , k,v'∈m₂)) = (proj₁ m₁≼m₂) _ _ k,v∈m₁m₂ in forget k,v'∈m₂