module Analysis.Sign where open import Data.Nat using (suc) open import Data.Product using (proj₁; _,_) open import Data.Empty using (⊥; ⊥-elim) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) open import Relation.Nullary using (yes; no) open import Language open import Lattice open import Showable using (Showable; show) import Analysis.Forward data Sign : Set where + : Sign - : Sign 0ˢ : Sign instance showable : Showable Sign showable = record { show = (λ { + → "+" ; - → "-" ; 0ˢ → "0" }) } -- g for siGn; s is used for strings and i is not very descriptive. _≟ᵍ_ : IsDecidable (_≡_ {_} {Sign}) _≟ᵍ_ + + = yes refl _≟ᵍ_ + - = no (λ ()) _≟ᵍ_ + 0ˢ = no (λ ()) _≟ᵍ_ - + = no (λ ()) _≟ᵍ_ - - = yes refl _≟ᵍ_ - 0ˢ = no (λ ()) _≟ᵍ_ 0ˢ + = no (λ ()) _≟ᵍ_ 0ˢ - = no (λ ()) _≟ᵍ_ 0ˢ 0ˢ = yes refl -- embelish 'sign' with a top and bottom element. open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB using () renaming ( AboveBelow to SignLattice ; ≈-dec to ≈ᵍ-dec ; ⊥ to ⊥ᵍ ; ⊤ to ⊤ᵍ ; [_] to [_]ᵍ ; _≈_ to _≈ᵍ_ ; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ ; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ ; ≈-lift to ≈ᵍ-lift ; ≈-refl to ≈ᵍ-refl ) -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. open AB.Plain 0ˢ using () renaming ( isLattice to isLatticeᵍ ; fixedHeight to fixedHeightᵍ ; _≼_ to _≼ᵍ_ ; _⊔_ to _⊔ᵍ_ ) open IsLattice isLatticeᵍ using () renaming ( ≼-trans to ≼ᵍ-trans ) plus : SignLattice → SignLattice → SignLattice plus ⊥ᵍ _ = ⊥ᵍ plus _ ⊥ᵍ = ⊥ᵍ plus ⊤ᵍ _ = ⊤ᵍ plus _ ⊤ᵍ = ⊤ᵍ plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ -- this is incredibly tedious: 125 cases per monotonicity proof, and tactics -- are hard. postulate for now. postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂) postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) minus : SignLattice → SignLattice → SignLattice minus ⊥ᵍ _ = ⊥ᵍ minus _ ⊥ᵍ = ⊥ᵍ minus ⊤ᵍ _ = ⊤ᵍ minus _ ⊤ᵍ = ⊤ᵍ minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) module WithProg (prog : Program) where open Program prog module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog open ForwardWithProg eval : ∀ (e : Expr) → VariableValues → SignLattice eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs) eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs) eval (` k) vs with ∈k-decᵛ k (proj₁ (proj₁ vs)) ... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs) ... | no _ = ⊤ᵍ eval (# 0) _ = [ 0ˢ ]ᵍ eval (# (suc n')) _ = [ + ]ᵍ eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e) eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ = let -- TODO: can this be done with less boilerplate? g₁vs₁ = eval e₁ vs₁ g₂vs₁ = eval e₂ vs₁ g₁vs₂ = eval e₁ vs₂ g₂vs₂ = eval e₂ vs₂ in ≼ᵍ-trans {plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂} (plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂)) (plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂)) eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ = let -- TODO: here too -- can this be done with less boilerplate? g₁vs₁ = eval e₁ vs₁ g₂vs₁ = eval e₂ vs₁ g₁vs₂ = eval e₁ vs₂ g₂vs₂ = eval e₂ vs₂ in ≼ᵍ-trans {minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂} (minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂)) (minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂)) eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂ with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂ ... | yes k∈kvs₁ | yes k∈kvs₂ = let (v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} k∈kvs₁ (v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂ in m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂ ... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁)) ... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂)) ... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ eval-Mono (# 0) _ = ≈ᵍ-refl eval-Mono (# (suc n')) _ = ≈ᵍ-refl open ForwardWithProg.WithEvaluator eval eval-Mono using (result) -- For debugging purposes, print out the result. output = show result