open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_) open import Lattice module Fixedpoint {a} {A : Set a} {h : ℕ} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (decA : IsDecidable _≈_) (flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_) (f : A → A) (Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA) (IsFiniteHeightLattice._≼_ flA) f) where open import Data.Nat.Properties using (+-suc; +-comm) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; sym) open import Relation.Nullary using (Dec; ¬_; yes; no) import Chain module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong open IsDecidable decA using () renaming (R-dec to ≈-dec) open IsFiniteHeightLattice flA private ⊥ᴬ : A ⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight)) ⊥ᴬ≼ : ∀ (a : A) → ⊥ᴬ ≼ a ⊥ᴬ≼ a with ≈-dec a ⊥ᴬ ... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a) ... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ) ... | yes ⊥ᴬ≈a⊓⊥ᴬ = (a , ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))) ... | no ⊥ᴬ̷≈a⊓⊥ᴬ = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight)))) where ⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ ⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _)) x≺⊥ᴬ : (⊥ᴬ ⊓ a) ≺ ⊥ᴬ x≺⊥ᴬ = ((⊥ᴬ , ≈-trans (⊔-comm _ _) (≈-trans (≈-refl {⊥ᴬ ⊔ (⊥ᴬ ⊓ a)}) (absorb-⊔-⊓ ⊥ᴬ a))) , ⊥ᴬ⊓a̷≈⊥ᴬ) -- using 'g', for gas, here helps make sure the function terminates. -- since A forms a fixed-height lattice, we must find a solution after -- 'h' steps at most. Gas is set up such that as soon as it runs -- out, we have exceeded h steps, which shouldn't be possible. doStep : ∀ (g hᶜ : ℕ) (a₁ a₂ : A) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h) (a₂≼fa₂ : a₂ ≼ f a₂) → Σ A (λ a → a ≈ f a) doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) c) doStep (suc g') hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ) with ≈-dec a₂ (f a₂) ... | yes a₂≈fa₂ = (a₂ , a₂≈fa₂) ... | no a₂̷≈fa₂ = doStep g' (suc hᶜ) a₁ (f a₂) c' g+hᶜ≡sh (Monotonicᶠ a₂≼fa₂) where a₂≺fa₂ : a₂ ≺ f a₂ a₂≺fa₂ = (a₂≼fa₂ , a₂̷≈fa₂) c' : ChainA.Chain a₁ (f a₂) (suc hᶜ) c' rewrite +-comm 1 hᶜ = ChainA.concat c (ChainA.step a₂≺fa₂ ≈-refl (ChainA.done (≈-refl {f a₂}))) fix : Σ A (λ a → a ≈ f a) fix = doStep (suc h) 0 ⊥ᴬ ⊥ᴬ (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ)) aᶠ : A aᶠ = proj₁ fix aᶠ≈faᶠ : aᶠ ≈ f aᶠ aᶠ≈faᶠ = proj₂ fix private stepPreservesLess : ∀ (g hᶜ : ℕ) (a₁ a₂ a : A) (a≈fa : a ≈ f a) (a₂≼a : a₂ ≼ a) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h) (a₂≼fa₂ : a₂ ≼ f a₂) → proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ a stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) c) stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ) with ≈-dec a₂ (f a₂) ... | yes _ = a₂≼a ... | no _ = stepPreservesLess g' _ _ _ a a≈fa (≼-cong ≈-refl (≈-sym a≈fa) (Monotonicᶠ a₂≼a)) _ _ _ aᶠ≼ : ∀ (a : A) → a ≈ f a → aᶠ ≼ a aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))