open import Equivalence module Homomorphism {a b} (A : Set a) (B : Set b) (_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set b) (≈₂-equiv : IsEquivalence B _≈₂_) (f : A → B) where open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_) open import Function.Definitions using (Surjective) open import Relation.Binary.Core using (_Preserves_⟶_ ) open import Data.Product using (_,_) open import Lattice open IsEquivalence ≈₂-equiv using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; ≈-refl to ≈₂-refl) open import Relation.Binary.Reasoning.Base.Single _≈₂_ ≈₂-refl ≈₂-trans infixl 20 _∙₂_ _∙₂_ = ≈₂-trans record SemilatticeHomomorphism (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) : Set (a ⊔ℓ b) where field f-preserves-≈ : f Preserves _≈₁_ ⟶ _≈₂_ f-⊔-distr : ∀ (a₁ a₂ : A) → f (a₁ ⊔₁ a₂) ≈₂ ((f a₁) ⊔₂ (f a₂)) module _ (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (sh : SemilatticeHomomorphism _⊔₁_ _⊔₂_) (≈₂-⊔₂-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈₂ a₂ → a₃ ≈₂ a₄ → (a₁ ⊔₂ a₃) ≈₂ (a₂ ⊔₂ a₄)) (surF : Surjective _≈₁_ _≈₂_ f) where open SemilatticeHomomorphism sh transportSemilattice : IsSemilattice A _≈₁_ _⊔₁_ → IsSemilattice B _≈₂_ _⊔₂_ transportSemilattice sA = record { ≈-equiv = ≈₂-equiv ; ≈-⊔-cong = ≈₂-⊔₂-cong ; ⊔-assoc = λ b₁ b₂ b₃ → let (a₁ , fa₁≈b₁) = surF b₁ (a₂ , fa₂≈b₂) = surF b₂ (a₃ , fa₃≈b₃) = surF b₃ in begin (b₁ ⊔₂ b₂) ⊔₂ b₃ ∼⟨ ≈₂-⊔₂-cong (≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂)) (≈₂-sym fa₃≈b₃) ⟩ (f a₁ ⊔₂ f a₂) ⊔₂ f a₃ ∼⟨ ≈₂-⊔₂-cong (≈₂-sym (f-⊔-distr a₁ a₂)) ≈₂-refl ⟩ f (a₁ ⊔₁ a₂) ⊔₂ f a₃ ∼⟨ ≈₂-sym (f-⊔-distr (a₁ ⊔₁ a₂) a₃) ⟩ f ((a₁ ⊔₁ a₂) ⊔₁ a₃) ∼⟨ f-preserves-≈ (IsSemilattice.⊔-assoc sA a₁ a₂ a₃) ⟩ f (a₁ ⊔₁ (a₂ ⊔₁ a₃)) ∼⟨ f-⊔-distr a₁ (a₂ ⊔₁ a₃) ⟩ f a₁ ⊔₂ f (a₂ ⊔₁ a₃) ∼⟨ ≈₂-⊔₂-cong ≈₂-refl (f-⊔-distr a₂ a₃) ⟩ f a₁ ⊔₂ (f a₂ ⊔₂ f a₃) ∼⟨ ≈₂-⊔₂-cong fa₁≈b₁ (≈₂-⊔₂-cong fa₂≈b₂ fa₃≈b₃) ⟩ b₁ ⊔₂ (b₂ ⊔₂ b₃) ∎ ; ⊔-comm = λ b₁ b₂ → let (a₁ , fa₁≈b₁) = surF b₁ (a₂ , fa₂≈b₂) = surF b₂ in begin b₁ ⊔₂ b₂ ∼⟨ ≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂) ⟩ f a₁ ⊔₂ f a₂ ∼⟨ ≈₂-sym (f-⊔-distr a₁ a₂) ⟩ f (a₁ ⊔₁ a₂) ∼⟨ f-preserves-≈ (IsSemilattice.⊔-comm sA a₁ a₂) ⟩ f (a₂ ⊔₁ a₁) ∼⟨ f-⊔-distr a₂ a₁ ⟩ f a₂ ⊔₂ f a₁ ∼⟨ ≈₂-⊔₂-cong fa₂≈b₂ fa₁≈b₁ ⟩ b₂ ⊔₂ b₁ ∎ ; ⊔-idemp = λ b → let (a , fa≈b) = surF b in begin b ⊔₂ b ∼⟨ ≈₂-⊔₂-cong (≈₂-sym fa≈b) (≈₂-sym fa≈b) ⟩ f a ⊔₂ f a ∼⟨ ≈₂-sym (f-⊔-distr a a) ⟩ f (a ⊔₁ a) ∼⟨ f-preserves-≈ (IsSemilattice.⊔-idemp sA a) ⟩ f a ∼⟨ fa≈b ⟩ b ∎ } record LatticeHomomorphism (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B) : Set (a ⊔ℓ b) where field ⊔-homomorphism : SemilatticeHomomorphism _⊔₁_ _⊔₂_ ⊓-homomorphism : SemilatticeHomomorphism _⊓₁_ _⊓₂_ open SemilatticeHomomorphism ⊔-homomorphism using (f-⊔-distr; f-preserves-≈) public open SemilatticeHomomorphism ⊓-homomorphism using () renaming (f-⊔-distr to f-⊓-distr) public module _ (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B) (_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B) (lh : LatticeHomomorphism _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_) (≈₂-⊔₂-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈₂ a₂ → a₃ ≈₂ a₄ → (a₁ ⊔₂ a₃) ≈₂ (a₂ ⊔₂ a₄)) (≈₂-⊓₂-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈₂ a₂ → a₃ ≈₂ a₄ → (a₁ ⊓₂ a₃) ≈₂ (a₂ ⊓₂ a₄)) (surF : Surjective _≈₁_ _≈₂_ f) where open LatticeHomomorphism lh transportLattice : IsLattice A _≈₁_ _⊔₁_ _⊓₁_ → IsLattice B _≈₂_ _⊔₂_ _⊓₂_ transportLattice lA = record { joinSemilattice = transportSemilattice _⊔₁_ _⊔₂_ (LatticeHomomorphism.⊔-homomorphism lh) ≈₂-⊔₂-cong surF (IsLattice.joinSemilattice lA) ; meetSemilattice = transportSemilattice _⊓₁_ _⊓₂_ (LatticeHomomorphism.⊓-homomorphism lh) ≈₂-⊓₂-cong surF (IsLattice.meetSemilattice lA) ; absorb-⊔-⊓ = λ b₁ b₂ → let (a₁ , fa₁≈b₁) = surF b₁ (a₂ , fa₂≈b₂) = surF b₂ in begin b₁ ⊔₂ (b₁ ⊓₂ b₂) ∼⟨ ≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-⊓₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂)) ⟩ f a₁ ⊔₂ (f a₁ ⊓₂ f a₂) ∼⟨ ≈₂-⊔₂-cong ≈₂-refl (≈₂-sym (f-⊓-distr a₁ a₂)) ⟩ f a₁ ⊔₂ f (a₁ ⊓₁ a₂) ∼⟨ ≈₂-sym (f-⊔-distr a₁ (a₁ ⊓₁ a₂)) ⟩ f (a₁ ⊔₁ (a₁ ⊓₁ a₂)) ∼⟨ f-preserves-≈ (IsLattice.absorb-⊔-⊓ lA a₁ a₂) ⟩ f a₁ ∼⟨ fa₁≈b₁ ⟩ b₁ ∎ ; absorb-⊓-⊔ = λ b₁ b₂ → let (a₁ , fa₁≈b₁) = surF b₁ (a₂ , fa₂≈b₂) = surF b₂ in begin b₁ ⊓₂ (b₁ ⊔₂ b₂) ∼⟨ ≈₂-⊓₂-cong (≈₂-sym fa₁≈b₁) (≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂)) ⟩ f a₁ ⊓₂ (f a₁ ⊔₂ f a₂) ∼⟨ ≈₂-⊓₂-cong ≈₂-refl (≈₂-sym (f-⊔-distr a₁ a₂)) ⟩ f a₁ ⊓₂ f (a₁ ⊔₁ a₂) ∼⟨ ≈₂-sym (f-⊓-distr a₁ (a₁ ⊔₁ a₂)) ⟩ f (a₁ ⊓₁ (a₁ ⊔₁ a₂)) ∼⟨ f-preserves-≈ (IsLattice.absorb-⊓-⊔ lA a₁ a₂) ⟩ f a₁ ∼⟨ fa₁≈b₁ ⟩ b₁ ∎ }