module Analysis.Sign where open import Data.String using (String) renaming (_≟_ to _≟ˢ_) open import Data.Nat using (suc) open import Data.Product using (_×_; proj₁; _,_) open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Unit using (⊤) open import Function using (_∘_) open import Language open import Lattice open import Utils using (Pairwise) open import Showable using (Showable; show) import Lattice.FiniteValueMap data Sign : Set where + : Sign - : Sign 0ˢ : Sign instance showable : Showable Sign showable = record { show = (λ { + → "+" ; - → "-" ; 0ˢ → "0" }) } -- g for siGn; s is used for strings and i is not very descriptive. _≟ᵍ_ : IsDecidable (_≡_ {_} {Sign}) _≟ᵍ_ + + = yes refl _≟ᵍ_ + - = no (λ ()) _≟ᵍ_ + 0ˢ = no (λ ()) _≟ᵍ_ - + = no (λ ()) _≟ᵍ_ - - = yes refl _≟ᵍ_ - 0ˢ = no (λ ()) _≟ᵍ_ 0ˢ + = no (λ ()) _≟ᵍ_ 0ˢ - = no (λ ()) _≟ᵍ_ 0ˢ 0ˢ = yes refl -- embelish 'sign' with a top and bottom element. open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB using () renaming ( AboveBelow to SignLattice ; ≈-dec to ≈ᵍ-dec ; ⊥ to ⊥ᵍ ; ⊤ to ⊤ᵍ ; [_] to [_]ᵍ ; _≈_ to _≈ᵍ_ ; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ ; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ ; ≈-lift to ≈ᵍ-lift ; ≈-refl to ≈ᵍ-refl ) -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. open AB.Plain 0ˢ using () renaming ( finiteHeightLattice to finiteHeightLatticeᵍ ; isLattice to isLatticeᵍ ; fixedHeight to fixedHeightᵍ ; _≼_ to _≼ᵍ_ ; _⊔_ to _⊔ᵍ_ ) open IsLattice isLatticeᵍ using () renaming ( ≼-trans to ≼ᵍ-trans ) plus : SignLattice → SignLattice → SignLattice plus ⊥ᵍ _ = ⊥ᵍ plus _ ⊥ᵍ = ⊥ᵍ plus ⊤ᵍ _ = ⊤ᵍ plus _ ⊤ᵍ = ⊤ᵍ plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ -- this is incredibly tedious: 125 cases per monotonicity proof, and tactics -- are hard. postulate for now. postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂) postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) minus : SignLattice → SignLattice → SignLattice minus ⊥ᵍ _ = ⊥ᵍ minus _ ⊥ᵍ = ⊥ᵍ minus ⊤ᵍ _ = ⊤ᵍ minus _ ⊤ᵍ = ⊤ᵍ minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) module WithProg (prog : Program) where open Program prog -- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators. module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars open VariableSignsFiniteMap using () renaming ( FiniteMap to VariableSigns ; isLattice to isLatticeᵛ ; _≈_ to _≈ᵛ_ ; _⊔_ to _⊔ᵛ_ ; _≼_ to _≼ᵛ_ ; ≈₂-dec⇒≈-dec to ≈ᵍ-dec⇒≈ᵛ-dec ; _∈_ to _∈ᵛ_ ; _∈k_ to _∈kᵛ_ ; _updating_via_ to _updatingᵛ_via_ ; locate to locateᵛ ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ ) open IsLattice isLatticeᵛ using () renaming ( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ ; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ ; ⊔-idemp to ⊔ᵛ-idemp ) open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeᵍ vars-Unique ≈ᵍ-dec _ fixedHeightᵍ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵛ ) ≈ᵛ-dec = ≈ᵍ-dec⇒≈ᵛ-dec ≈ᵍ-dec joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ ⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ)) -- Finally, the map we care about is (state -> (variables -> sign)). Bring that in. module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states open StateVariablesFiniteMap using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks]) renaming ( FiniteMap to StateVariables ; isLattice to isLatticeᵐ ; _∈k_ to _∈kᵐ_ ; locate to locateᵐ ; _≼_ to _≼ᵐ_ ; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec ; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ ) open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ using () renaming ( isFiniteHeightLattice to isFiniteHeightLatticeᵐ ) ≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ -- build up the 'join' function, which follows from Exercise 4.26's -- -- L₁ → (A → L₂) -- -- Construction, with L₁ = (A → L₂), and f = id joinForKey : State → StateVariables → VariableSigns joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ]) -- The per-key join is made up of map key accesses (which are monotonic) -- and folds using the join operation (also monotonic) joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k) joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ = foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ (m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂) (⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ -- The name f' comes from the formulation of Exercise 4.26. open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states renaming ( f' to joinAll ; f'-Monotonic to joinAll-Mono ) -- With 'join' in hand, we need to perform abstract evaluation. vars-in-Map : ∀ (k : String) (vs : VariableSigns) → k ∈ˡ vars → k ∈kᵛ vs vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s eval : ∀ (e : Expr) → (∀ k → k ∈ᵉ e → k ∈ˡ vars) → VariableSigns → SignLattice eval (e₁ + e₂) k∈e⇒k∈vars vs = plus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs) (eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs) eval (e₁ - e₂) k∈e⇒k∈vars vs = minus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs) (eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs) eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here))) eval (# 0) _ _ = [ 0ˢ ]ᵍ eval (# (suc n')) _ _ = [ + ]ᵍ eval-Mono : ∀ (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars) eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ = let -- TODO: can this be done with less boilerplate? k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁) k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂) g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁ g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁ g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂ g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂ in ≼ᵍ-trans {plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂} (plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂)) (plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂)) eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ = let -- TODO: here too -- can this be done with less boilerplate? k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁) k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂) g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁ g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁ g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂ g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂ in ≼ᵍ-trans {minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂} (minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂)) (minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂)) eval-Mono (` k) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ = let (v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here)) (v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here)) in m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂ eval-Mono (# 0) _ _ = ≈ᵍ-refl eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) where open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e k∈e⇒k∈vars) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂) (k ∷ []) renaming ( f' to updateVariablesFromExpression ; f'-Monotonic to updateVariablesFromExpression-Mono ) public updateVariablesForState : State → StateVariables → VariableSigns updateVariablesForState s sv -- More weirdness here. Apparently, capturing the with-equality proof -- using 'in p' makes code that reasons about this function (below) -- throw ill-typed with-abstraction errors. Instead, make use of the -- fact that later with-clauses are generalized over earlier ones to -- construct a specialization of vars-complete for (code s). with code s | (λ k → vars-complete {k} s) ... | k ← e | k∈codes⇒k∈vars = let (vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv) in updateVariablesFromExpression k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) vs updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s) updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ with code s | (λ k → vars-complete {k} s) ... | k ← e | k∈codes⇒k∈vars = let (vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁) (vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂) vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂ in updateVariablesFromExpression-Mono k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂ open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states renaming ( f' to updateAll ; f'-Monotonic to updateAll-Mono ) analyze : StateVariables → StateVariables analyze = updateAll ∘ joinAll analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂) open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂) using () renaming (aᶠ to signs) -- Debugging code: print the resulting map. output = show signs