module Analysis.Sign where open import Data.String using (String) renaming (_≟_ to _≟ˢ_) open import Data.Nat using (suc) open import Data.Product using (_×_; proj₁; _,_) open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Unit using (⊤) open import Language open import Lattice open import Utils using (Pairwise) import Lattice.Bundles.FiniteValueMap private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice data Sign : Set where + : Sign - : Sign 0ˢ : Sign -- g for siGn; s is used for strings and i is not very descriptive. _≟ᵍ_ : IsDecidable (_≡_ {_} {Sign}) _≟ᵍ_ + + = yes refl _≟ᵍ_ + - = no (λ ()) _≟ᵍ_ + 0ˢ = no (λ ()) _≟ᵍ_ - + = no (λ ()) _≟ᵍ_ - - = yes refl _≟ᵍ_ - 0ˢ = no (λ ()) _≟ᵍ_ 0ˢ + = no (λ ()) _≟ᵍ_ 0ˢ - = no (λ ()) _≟ᵍ_ 0ˢ 0ˢ = yes refl -- embelish 'sign' with a top and bottom element. open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB using () renaming ( AboveBelow to SignLattice ; ≈-dec to ≈ᵍ-dec ; ⊥ to ⊥ᵍ ; ⊤ to ⊤ᵍ ; [_] to [_]ᵍ ; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ ; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ ; ≈-lift to ≈ᵍ-lift ) -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited) finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ open FiniteHeightLattice finiteHeightLatticeᵍ using () renaming ( _≼_ to _≼ᵍ_ ; _≈_ to _≈ᵍ_ ; _⊔_ to _⊔ᵍ_ ; ≈-refl to ≈ᵍ-refl ) plus : SignLattice → SignLattice → SignLattice plus ⊥ᵍ _ = ⊥ᵍ plus _ ⊥ᵍ = ⊥ᵍ plus ⊤ᵍ _ = ⊤ᵍ plus _ ⊤ᵍ = ⊤ᵍ plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ -- this is incredibly tedious: 125 cases per monotonicity proof, and tactics -- are hard. postulate for now. postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂) postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) minus : SignLattice → SignLattice → SignLattice minus ⊥ᵍ _ = ⊥ᵍ minus _ ⊥ᵍ = ⊥ᵍ minus ⊤ᵍ _ = ⊤ᵍ minus _ ⊤ᵍ = ⊤ᵍ minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) module _ (prog : Program) where open Program prog -- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators. open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec using () renaming ( finiteHeightLattice to finiteHeightLatticeᵛ ; FiniteMap to VariableSigns ; _≈_ to _≈ᵛ_ ; _⊔_ to _⊔ᵛ_ ; ≈-dec to ≈ᵛ-dec ; _∈_ to _∈ᵛ_ ; _∈k_ to _∈kᵛ_ ; _updating_via_ to _updatingᵛ_via_ ; locate to locateᵛ ) open FiniteHeightLattice finiteHeightLatticeᵛ using () renaming ( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ ; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ ; _≼_ to _≼ᵛ_ ; joinSemilattice to joinSemilatticeᵛ ; ⊔-idemp to ⊔ᵛ-idemp ) ⊥ᵛ = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight finiteHeightLatticeᵛ))) -- Finally, the map we care about is (state -> (variables -> sign)). Bring that in. module StateVariablesFiniteMap = FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec open StateVariablesFiniteMap using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks]) renaming ( finiteHeightLattice to finiteHeightLatticeᵐ ; FiniteMap to StateVariables ; isLattice to isLatticeᵐ ; _∈k_ to _∈kᵐ_ ; locate to locateᵐ ) open FiniteHeightLattice finiteHeightLatticeᵐ using () renaming (_≼_ to _≼ᵐ_) -- build up the 'join' function, which follows from Exercise 4.26's -- -- L₁ → (A → L₂) -- -- Construction, with L₁ = (A → L₂), and f = id joinForKey : State → StateVariables → VariableSigns joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ]) -- The per-key join is made up of map key accesses (which are monotonic) -- and folds using the join operation (also monotonic) joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k) joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ = foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ (m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂) (⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ -- The name f' comes from the formulation of Exercise 4.26. open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states renaming ( f' to joinAll ; f'-Monotonic to joinAll-Mono ) -- With 'join' in hand, we need to perform abstract evaluation. vars-in-Map : ∀ (k : String) (vs : VariableSigns) → k ∈ˡ vars → k ∈kᵛ vs vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s eval : ∀ (e : Expr) → (∀ k → k ∈ᵉ e → k ∈ˡ vars) → VariableSigns → SignLattice eval (e₁ + e₂) k∈e⇒k∈vars vs = plus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs) (eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs) eval (e₁ - e₂) k∈e⇒k∈vars vs = minus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs) (eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs) eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here))) eval (# 0) _ _ = [ 0ˢ ]ᵍ eval (# (suc n')) _ _ = [ + ]ᵍ updateForState : State → StateVariables → VariableSigns updateForState s sv with code s in p ... | k ← e = let (vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv) k∈e⇒k∈codes = λ k k∈e → subst (λ stmt → k ∈ᵗ stmt) (sym p) (in←₂ k∈e) k∈e⇒k∈vars = λ k k∈e → vars-complete s (k∈e⇒k∈codes k k∈e) in vs updatingᵛ (k ∷ []) via (λ _ → eval e k∈e⇒k∈vars vs) -- module Test = StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ joinAll joinAll-Mono