open import Language hiding (_[_]) open import Lattice module Analysis.Forward.Evaluation (L : Set) {h} {_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L} {{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}} {{≈ˡ-dec : IsDecidable _≈ˡ_}} (prog : Program) where open import Analysis.Forward.Lattices L prog open import Data.Product using (_,_) open IsFiniteHeightLattice isFiniteHeightLatticeˡ using () renaming ( isLattice to isLatticeˡ ; _≼_ to _≼ˡ_ ) open Program prog -- The "full" version of the analysis ought to define a function -- that analyzes each basic statement. For some analyses, the state ID -- is used as part of the lattice, so include it here. record StmtEvaluator : Set where field eval : State → BasicStmt → VariableValues → VariableValues eval-Monoʳ : ∀ (s : State) (bs : BasicStmt) → Monotonic _≼ᵛ_ _≼ᵛ_ (eval s bs) -- For some "simpler" analyes, all we need to do is analyze the expressions. -- For that purpose, provide a simpler evaluator type. record ExprEvaluator : Set where field eval : Expr → VariableValues → L eval-Monoʳ : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e) -- Evaluators have a notion of being "valid", in which the (symbolic) -- manipulations on lattice elements they perform match up with -- the semantics. Define what it means to be valid for statement and -- expression-based evaluators. Define "IsValidExprEvaluator" -- and "IsValidStmtEvaluator" standalone so that users can use them -- in their type expressions. module _ {{evaluator : ExprEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where open ExprEvaluator evaluator open LatticeInterpretation interpretation IsValidExprEvaluator : Set IsValidExprEvaluator = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v record ValidExprEvaluator (evaluator : ExprEvaluator) (interpretation : LatticeInterpretation isLatticeˡ) : Set₁ where field valid : IsValidExprEvaluator {{evaluator}} {{interpretation}} module _ {{evaluator : StmtEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where open StmtEvaluator evaluator open LatticeInterpretation interpretation IsValidStmtEvaluator : Set IsValidStmtEvaluator = ∀ {s vs ρ₁ ρ₂ bs} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ eval s bs vs ⟧ᵛ ρ₂ record ValidStmtEvaluator (evaluator : StmtEvaluator) (interpretation : LatticeInterpretation isLatticeˡ) : Set₁ where field valid : IsValidStmtEvaluator {{evaluator}} {{interpretation}}