open import Lattice module Lattice.Prod {a b} (A : Set a) (B : Set b) {_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b} {_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B} {_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B} {{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} where open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_) open import Data.Nat using (ℕ; _≤_; _+_; suc) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Empty using (⊥-elim) open import Relation.Binary.Core using (_Preserves_⟶_ ) open import Relation.Binary.PropositionalEquality using (sym; subst) open import Relation.Binary.Definitions using (Decidable) open import Relation.Nullary using (¬_; yes; no) open import Equivalence import Chain open IsLattice lA using () renaming ( ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans ; joinSemilattice to joinSemilattice₁ ; meetSemilattice to meetSemilattice₁ ; FixedHeight to FixedHeight₁ ; ⊔-idemp to ⊔₁-idemp ; _≼_ to _≼₁_; _≺_ to _≺₁_ ; ≺-cong to ≺₁-cong ) open IsLattice lB using () renaming ( ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans ; joinSemilattice to joinSemilattice₂ ; meetSemilattice to meetSemilattice₂ ; FixedHeight to FixedHeight₂ ; ⊔-idemp to ⊔₂-idemp ; _≼_ to _≼₂_; _≺_ to _≺₂_ ; ≺-cong to ≺₂-cong ) _≈_ : A × B → A × B → Set (a ⊔ℓ b) (a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂) instance ≈-equiv : IsEquivalence (A × B) _≈_ ≈-equiv = record { ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl) ; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) → (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂) ; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) → ( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ ) } _⊔_ : A × B → A × B → A × B (a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂) _⊓_ : A × B → A × B → A × B (a₁ , b₁) ⊓ (a₂ , b₂) = (a₁ ⊓₁ a₂ , b₁ ⊓₂ b₂) private module ProdIsSemilattice (f₁ : A → A → A) (f₂ : B → B → B) (sA : IsSemilattice A _≈₁_ f₁) (sB : IsSemilattice B _≈₂_ f₂) where isSemilattice : IsSemilattice (A × B) _≈_ (λ (a₁ , b₁) (a₂ , b₂) → (f₁ a₁ a₂ , f₂ b₁ b₂)) isSemilattice = record { ≈-equiv = ≈-equiv ; ≈-⊔-cong = λ (a₁≈a₂ , b₁≈b₂) (a₃≈a₄ , b₃≈b₄) → ( IsSemilattice.≈-⊔-cong sA a₁≈a₂ a₃≈a₄ , IsSemilattice.≈-⊔-cong sB b₁≈b₂ b₃≈b₄ ) ; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) → ( IsSemilattice.⊔-assoc sA a₁ a₂ a₃ , IsSemilattice.⊔-assoc sB b₁ b₂ b₃ ) ; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂) → ( IsSemilattice.⊔-comm sA a₁ a₂ , IsSemilattice.⊔-comm sB b₁ b₂ ) ; ⊔-idemp = λ (a , b) → ( IsSemilattice.⊔-idemp sA a , IsSemilattice.⊔-idemp sB b ) } instance isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_ isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂ isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_ isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂ isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_ isLattice = record { joinSemilattice = isJoinSemilattice ; meetSemilattice = isMeetSemilattice ; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊔-⊓ lA a₁ a₂ , IsLattice.absorb-⊔-⊓ lB b₁ b₂ ) ; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) → ( IsLattice.absorb-⊓-⊔ lA a₁ a₂ , IsLattice.absorb-⊓-⊔ lB b₁ b₂ ) } lattice : Lattice (A × B) lattice = record { _≈_ = _≈_ ; _⊔_ = _⊔_ ; _⊓_ = _⊓_ ; isLattice = isLattice } module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}} where open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec) open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec) ≈-dec : Decidable _≈_ ≈-dec (a₁ , b₁) (a₂ , b₂) with ≈₁-dec a₁ a₂ | ≈₂-dec b₁ b₂ ... | yes a₁≈a₂ | yes b₁≈b₂ = yes (a₁≈a₂ , b₁≈b₂) ... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂) ... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂) instance ≈-Decidable : IsDecidable _≈_ ≈-Decidable = record { R-dec = ≈-dec } module _ {h₁ h₂ : ℕ} {{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where open import Data.Nat.Properties open IsLattice isLattice using (_≼_; _≺_; ≺-cong) module ChainMapping₁ = ChainMapping joinSemilattice₁ isJoinSemilattice module ChainMapping₂ = ChainMapping joinSemilattice₂ isJoinSemilattice module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁) open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁) open ProdChain using (Chain; concat; done; step) private a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b)) a,∙-Monotonic a {b₁} {b₂} b₁⊔b₂≈b₂ = (⊔₁-idemp a , b₁⊔b₂≈b₂) a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_ a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂) ∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b)) ∙,b-Monotonic b {a₁} {a₂} a₁⊔a₂≈a₂ = (a₁⊔a₂≈a₂ , ⊔₂-idemp b) ∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_ ∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl) open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁) open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂) unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂))) unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl)) unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} ((a₁≼a , b₁≼b) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂) with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂ ... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b)) ... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((suc n₁ , n₂) , ((step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂))) ... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂) , subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂) )) ... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ((suc n₁ , suc n₂) , ( (step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂) , m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)) )) instance fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂) fixedHeight = record { ⊥ = (⊥₁ , ⊥₂) ; ⊤ = (⊤₁ , ⊤₂) ; longestChain = concat (ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁) (ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂) ; bounded = λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂ in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂)) } isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_ isFiniteHeightLattice = record { isLattice = isLattice ; fixedHeight = fixedHeight } finiteHeightLattice : FiniteHeightLattice (A × B) finiteHeightLattice = record { height = h₁ + h₂ ; _≈_ = _≈_ ; _⊔_ = _⊔_ ; _⊓_ = _⊓_ ; isFiniteHeightLattice = isFiniteHeightLattice }