{-# OPTIONS --guardedness #-} module Language.Equivalence where open import Language.Nested using () renaming ( Instruction to Instructionᵃ; Program to Programᵃ; Env to Envᵃ ; pushint to pushintᵃ; pushbool to pushboolᵃ; add to addᵃ ; loop to loopᵃ; break to breakᵃ ; Triple to Tripleᵃ ; _⇒_ to _⇒ᵃ_; _⇒*_ to _⇒*ᵃ_ ; pushint-eval to pushint-evalᵃ; pushbool-eval to pushbool-evalᵃ; add-eval to add-evalᵃ ; break-evalᵗ to break-evalᵗᵃ; break-evalᶠ to break-evalᶠᵃ; empty-eval to empty-evalᵃ ; loop-eval⁰ to loop-eval⁰ᵃ; loop-evalⁿ to loop-evalⁿᵃ ; doneᵉ to doneᵉᵃ; _thenᵉ_ to _thenᵉᵃ_ ) open import Language.Flat using (_⇒ₓ_; pushint-skip; pushbool-skip; add-skip; break-skip; loop-skip; end-skip ) renaming ( Instruction to Instructionᵇ; Program to Programᵇ; Env to Envᵇ ; pushint to pushintᵇ; pushbool to pushboolᵇ; add to addᵇ ; loop to loopᵇ; break to breakᵇ; end to endᵇ ; Triple to Tripleᵇ ; _⇒_ to _⇒ᵇ_; _⇒*_ to _⇒*ᵇ_ ; pushint-eval to pushint-evalᵇ; pushbool-eval to pushbool-evalᵇ; add-eval to add-evalᵇ ; break-evalᵗ to break-evalᵗᵇ; break-evalᶠ to break-evalᶠᵇ; end-eval to end-evalᵇ ; loop-eval⁰ to loop-eval⁰ᵇ; loop-evalⁿ to loop-evalⁿᵇ ; doneᵉ to doneᵉᵇ; _thenᵉ_ to _thenᵉᵇ_ ) open import Language.Values using ( Value; int; bool ; ValueType; tint; tbool ; ⟦_⟧ˢ; ⟦⟧ˢ-empty; ⟦⟧ˢ-int; ⟦⟧ˢ-bool ; s; s'; s'' ; st; st'; st'' ; b; b₁; b₂ ; z; z₁; z₂ ) open import Data.List using (List; _∷_; []; length; foldr; _++_) open import Data.List.Properties using (++-assoc) open import Data.Product using (Σ; _×_; _,_) open import Data.Nat using (ℕ) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) variable n n' : ℕ iᵃ : Instructionᵃ isᵃ isᵃ' isᵃ'' : Programᵃ Sᵃ Sᵃ' Sᵃ'' : Envᵃ iᵇ : Instructionᵇ isᵇ isᵇ' isᵇ'' : Programᵇ Sᵇ Sᵇ' Sᵇ'' : Envᵇ interleaved mutual ⟦_⟧ⁱ : Instructionᵃ → List Instructionᵇ ⟦_⟧ⁱˢ : List Instructionᵃ → List Instructionᵇ ⟦ pushintᵃ z ⟧ⁱ = pushintᵇ z ∷ [] ⟦ pushboolᵃ b ⟧ⁱ = pushboolᵇ b ∷ [] ⟦ addᵃ ⟧ⁱ = addᵇ ∷ [] ⟦ loopᵃ n is ⟧ⁱ = loopᵇ n ∷ (⟦ is ⟧ⁱˢ ++ endᵇ ∷ []) ⟦ breakᵃ ⟧ⁱ = breakᵇ ∷ [] ⟦ [] ⟧ⁱˢ = [] ⟦ i ∷ is ⟧ⁱˢ = ⟦ i ⟧ⁱ ++ ⟦ is ⟧ⁱˢ -- Translation always leaves well-balanced programs interleaved mutual lemma₁ : isᵇ ⇒ₓ isᵇ' → (⟦ iᵃ ⟧ⁱ ++ isᵇ) ⇒ₓ isᵇ' lemma₁' : isᵇ ⇒ₓ isᵇ' → (⟦ isᵃ ⟧ⁱˢ ++ isᵇ) ⇒ₓ isᵇ' lemma₂ : (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ isᵇ) ⇒ₓ isᵇ lemma₁ {iᵃ = pushintᵃ z} = pushint-skip lemma₁ {iᵃ = pushboolᵃ z} = pushbool-skip lemma₁ {iᵃ = addᵃ} = add-skip lemma₁ {iᵃ = breakᵃ} = break-skip lemma₁ {isᵇ = isᵇ} {iᵃ = loopᵃ n is} rewrite ++-assoc ⟦ is ⟧ⁱˢ (endᵇ ∷ []) isᵇ = loop-skip (lemma₂ {isᵃ = is} {isᵇ = isᵇ}) lemma₁' {isᵃ = []} isᵇ⇒ₓisᵇ' = isᵇ⇒ₓisᵇ' lemma₁' {isᵇ = isᵇ} {isᵃ = iᵃ ∷ isᵃ} isᵇ⇒ₓisᵇ' rewrite ++-assoc ⟦ iᵃ ⟧ⁱ ⟦ isᵃ ⟧ⁱˢ isᵇ = lemma₁ {iᵃ = iᵃ} (lemma₁' {isᵃ = isᵃ} isᵇ⇒ₓisᵇ') lemma₂ {isᵃ = isᵃ} = lemma₁' {isᵃ = isᵃ} end-skip -- In flat semantics, we drop the top continuation and seek forward until we find -- an 'end'. In nested semantics, we drop the current instructions and use the -- bit of the top continuation after the 'while'. We need to be able to reconcile -- the two. data ⟦_⟧ᵀ=_ : Programᵃ × Envᵃ → Programᵇ × Envᵇ → Set where ⟦⟧ᵀ-empty : ⟦ isᵃ , [] ⟧ᵀ= (⟦ isᵃ ⟧ⁱˢ , []) ⟦⟧ᵀ-step : ⟦ isᵃ'' , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) → ⟦ isᵃ , ((loopᵃ n isᵃ' ∷ isᵃ'') ∷ Sᵃ) ⟧ᵀ= ((⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) ++ isᵇ , (⟦ loopᵃ n isᵃ' ⟧ⁱ ++ isᵇ) ∷ Sᵇ) step-equivalence : (s , isᵃ , Sᵃ) ⇒ᵃ (s' , isᵃ' , Sᵃ') → ⟦ isᵃ , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) → Σ (Programᵇ × Envᵇ) (λ { (isᵇ' , Sᵇ') → (s , isᵇ , Sᵇ) ⇒ᵇ (s' , isᵇ' , Sᵇ') × ⟦ isᵃ' , Sᵃ' ⟧ᵀ= (isᵇ' , Sᵇ') }) step-equivalence pushint-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , pushint-evalᵇ , ⟦⟧ᵀ-empty) step-equivalence pushint-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , pushint-evalᵇ , ⟦⟧ᵀ-step next) step-equivalence pushbool-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , pushbool-evalᵇ , ⟦⟧ᵀ-empty) step-equivalence pushbool-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , pushbool-evalᵇ , ⟦⟧ᵀ-step next) step-equivalence add-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , add-evalᵇ , ⟦⟧ᵀ-empty) step-equivalence add-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , add-evalᵇ , ⟦⟧ᵀ-step next) step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-eval⁰ᵃ ⟦⟧ᵀ-empty rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ = ((_ , _) , loop-eval⁰ᵇ (lemma₁' {isᵃ = isˡ} end-skip) , ⟦⟧ᵀ-empty) step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-eval⁰ᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} rec) rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ ⟦ isᵃ ⟧ⁱˢ) (endᵇ ∷ []) rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ ⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ = ((_ , _) , loop-eval⁰ᵇ (lemma₁' {isᵃ = isˡ} end-skip) , (⟦⟧ᵀ-step rec)) step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-evalⁿᵃ ⟦⟧ᵀ-empty = ((_ , _) , loop-evalⁿᵇ , ⟦⟧ᵀ-step ⟦⟧ᵀ-empty) step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-evalⁿᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} rec) rewrite ++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ (endᵇ ∷ []) rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) rewrite sym (++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ [])) rewrite ++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ = (_ , loop-evalⁿᵇ , ⟦⟧ᵀ-step (⟦⟧ᵀ-step rec)) step-equivalence break-evalᶠᵃ (⟦⟧ᵀ-step next) = ((_ , _) , break-evalᶠᵇ , ⟦⟧ᵀ-step next) step-equivalence {isᵃ = breakᵃ ∷ isᵃ} {Sᵃ = (loopᵃ n isˡ ∷ isᵃ') ∷ Sᵃ} break-evalᵗᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} next) rewrite ++-assoc ⟦ isᵃ ⟧ⁱˢ (endᵇ ∷ []) isᵇ = ((_ , _) , break-evalᵗᵇ (lemma₁' {isᵃ = isᵃ} end-skip) , next) step-equivalence empty-evalᵃ (⟦⟧ᵀ-step ⟦⟧ᵀ-empty) = ((_ , _) , end-evalᵇ , ⟦⟧ᵀ-empty) step-equivalence {Sᵃ = (loopᵃ n isˡ ∷ isᵃ') ∷ Sᵃ} empty-evalᵃ (⟦⟧ᵀ-step (⟦⟧ᵀ-step {isᵇ = isᵇ} next)) rewrite sym (++-assoc (loopᵇ n ∷ ⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ' ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ) rewrite sym (++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ' ⟧ⁱˢ) (endᵇ ∷ [])) = ((_ , _) , end-evalᵇ , ⟦⟧ᵀ-step next) equivalence : (s , isᵃ , Sᵃ) ⇒*ᵃ (s' , isᵃ' , Sᵃ') → ⟦ isᵃ , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) → Σ (Programᵇ × Envᵇ) (λ { (isᵇ' , Sᵇ') → (s , isᵇ , Sᵇ) ⇒*ᵇ (s' , isᵇ' , Sᵇ') × ⟦ isᵃ' , Sᵃ' ⟧ᵀ= (isᵇ' , Sᵇ') }) equivalence doneᵉᵃ trans@(⟦⟧ᵀ-empty) = (_ , (doneᵉᵇ , trans)) equivalence (isᵃ⇒isᵃ' thenᵉᵃ rest) trans = let (_ , isᵇ⇒isᵇ' , trans') = step-equivalence isᵃ⇒isᵃ' trans in let (_ , isᵇ'⇒*isᵇ'' , trans'') = equivalence rest trans' in (_ , isᵇ⇒isᵇ' thenᵉᵇ isᵇ'⇒*isᵇ'' , trans'') equivalence' : (s , isᵃ , []) ⇒*ᵃ (s' , [] , []) → (s , ⟦ isᵃ ⟧ⁱˢ , []) ⇒*ᵇ (s' , [] , []) equivalence' eval with (_ , isᵃ⇒| , ⟦⟧ᵀ-empty) ← equivalence eval ⟦⟧ᵀ-empty = isᵃ⇒|