#include "ast.hpp" #include #include #include "binop.hpp" #include "error.hpp" #include "instruction.hpp" #include "type.hpp" #include "type_env.hpp" #include "env.hpp" static void print_indent(int n, std::ostream& to) { while(n--) to << " "; } void ast_int::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "INT: " << value << std::endl; } void ast_int::find_free(std::set& into) { } type_ptr ast_int::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; return type_ptr(new type_app(env->lookup_type("Int"))); } void ast_int::translate(global_scope& scope) { } void ast_int::compile(const env_ptr& env, std::vector& into) const { into.push_back(instruction_ptr(new instruction_pushint(value))); } void ast_lid::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "LID: " << id << std::endl; } void ast_lid::find_free(std::set& into) { into.insert(id); } type_ptr ast_lid::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; type_scheme_ptr lid_type = env->lookup(id); if(!lid_type) throw type_error("unknown identifier " + id, loc); return lid_type->instantiate(mgr); } void ast_lid::translate(global_scope& scope) { } void ast_lid::compile(const env_ptr& env, std::vector& into) const { into.push_back(instruction_ptr( (this->env->is_global(id)) ? (instruction*) new instruction_pushglobal(this->env->get_mangled_name(id)) : (instruction*) new instruction_push(env->get_offset(id)))); } void ast_uid::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "UID: " << id << std::endl; } void ast_uid::find_free(std::set& into) { } type_ptr ast_uid::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; type_scheme_ptr uid_type = env->lookup(id); if(!uid_type) throw type_error("unknown constructor " + id, loc); return uid_type->instantiate(mgr); } void ast_uid::translate(global_scope& scope) { } void ast_uid::compile(const env_ptr& env, std::vector& into) const { into.push_back(instruction_ptr( new instruction_pushglobal(this->env->get_mangled_name(id)))); } void ast_binop::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "BINOP: " << op_name(op) << std::endl; left->print(indent + 1, to); right->print(indent + 1, to); } void ast_binop::find_free(std::set& into) { left->find_free(into); right->find_free(into); } type_ptr ast_binop::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; type_ptr ltype = left->typecheck(mgr, env); type_ptr rtype = right->typecheck(mgr, env); type_ptr ftype = env->lookup(op_name(op))->instantiate(mgr); if(!ftype) throw type_error("unknown binary operator " + op_name(op), loc); // For better type errors, we first require binary function, // and only then unify each argument. This way, we can // precisely point out which argument is "wrong". type_ptr return_type = mgr.new_type(); type_ptr second_type = mgr.new_type(); type_ptr first_type = mgr.new_type(); type_ptr arrow_one = type_ptr(new type_arr(second_type, return_type)); type_ptr arrow_two = type_ptr(new type_arr(first_type, arrow_one)); mgr.unify(ftype, arrow_two, loc); mgr.unify(first_type, ltype, left->loc); mgr.unify(second_type, rtype, right->loc); return return_type; } void ast_binop::translate(global_scope& scope) { left->translate(scope); right->translate(scope); } void ast_binop::compile(const env_ptr& env, std::vector& into) const { right->compile(env, into); left->compile(env_ptr(new env_offset(1, env)), into); auto mangled_name = this->env->get_mangled_name(op_name(op)); into.push_back(instruction_ptr(new instruction_pushglobal(mangled_name))); into.push_back(instruction_ptr(new instruction_mkapp())); into.push_back(instruction_ptr(new instruction_mkapp())); } void ast_app::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "APP:" << std::endl; left->print(indent + 1, to); right->print(indent + 1, to); } void ast_app::find_free(std::set& into) { left->find_free(into); right->find_free(into); } type_ptr ast_app::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; type_ptr ltype = left->typecheck(mgr, env); type_ptr rtype = right->typecheck(mgr, env); type_ptr return_type = mgr.new_type(); type_ptr arrow = type_ptr(new type_arr(rtype, return_type)); mgr.unify(arrow, ltype, left->loc); return return_type; } void ast_app::translate(global_scope& scope) { left->translate(scope); right->translate(scope); } void ast_app::compile(const env_ptr& env, std::vector& into) const { right->compile(env, into); left->compile(env_ptr(new env_offset(1, env)), into); into.push_back(instruction_ptr(new instruction_mkapp())); } void ast_case::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "CASE: " << std::endl; for(auto& branch : branches) { print_indent(indent + 1, to); branch->pat->print(to); to << std::endl; branch->expr->print(indent + 2, to); } } void ast_case::find_free(std::set& into) { of->find_free(into); for(auto& branch : branches) { std::set free_in_branch; std::set pattern_variables; branch->pat->find_variables(pattern_variables); branch->expr->find_free(free_in_branch); for(auto& free : free_in_branch) { if(pattern_variables.find(free) == pattern_variables.end()) into.insert(free); } } } type_ptr ast_case::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; type_var* var; type_ptr case_type = mgr.resolve(of->typecheck(mgr, env), var); type_ptr branch_type = mgr.new_type(); for(auto& branch : branches) { type_env_ptr new_env = type_scope(env); branch->pat->typecheck(case_type, mgr, new_env); type_ptr curr_branch_type = branch->expr->typecheck(mgr, new_env); mgr.unify(curr_branch_type, branch_type, branch->expr->loc); } input_type = mgr.resolve(case_type, var); type_app* app_type; if(!(app_type = dynamic_cast(input_type.get())) || !dynamic_cast(app_type->constructor.get())) { throw type_error("attempting case analysis of non-data type"); } return branch_type; } void ast_case::translate(global_scope& scope) { of->translate(scope); for(auto& branch : branches) { branch->expr->translate(scope); } } void ast_case::compile(const env_ptr& env, std::vector& into) const { type_app* app_type = dynamic_cast(input_type.get()); type_data* type = dynamic_cast(app_type->constructor.get()); of->compile(env, into); into.push_back(instruction_ptr(new instruction_eval())); instruction_jump* jump_instruction = new instruction_jump(); into.push_back(instruction_ptr(jump_instruction)); for(auto& branch : branches) { std::vector branch_instructions; pattern_var* vpat; pattern_constr* cpat; if((vpat = dynamic_cast(branch->pat.get()))) { branch->expr->compile(env_ptr(new env_offset(1, env)), branch_instructions); for(auto& constr_pair : type->constructors) { if(jump_instruction->tag_mappings.find(constr_pair.second.tag) != jump_instruction->tag_mappings.end()) break; jump_instruction->tag_mappings[constr_pair.second.tag] = jump_instruction->branches.size(); } jump_instruction->branches.push_back(std::move(branch_instructions)); } else if((cpat = dynamic_cast(branch->pat.get()))) { env_ptr new_env = env; for(auto it = cpat->params.rbegin(); it != cpat->params.rend(); it++) { new_env = env_ptr(new env_var(*it, new_env)); } branch_instructions.push_back(instruction_ptr(new instruction_split( cpat->params.size()))); branch->expr->compile(new_env, branch_instructions); branch_instructions.push_back(instruction_ptr(new instruction_slide( cpat->params.size()))); int new_tag = type->constructors[cpat->constr].tag; if(jump_instruction->tag_mappings.find(new_tag) != jump_instruction->tag_mappings.end()) throw type_error("technically not a type error: duplicate pattern"); jump_instruction->tag_mappings[new_tag] = jump_instruction->branches.size(); jump_instruction->branches.push_back(std::move(branch_instructions)); } } for(auto& constr_pair : type->constructors) { if(jump_instruction->tag_mappings.find(constr_pair.second.tag) == jump_instruction->tag_mappings.end()) throw type_error("non-total pattern"); } } void ast_let::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "LET: " << std::endl; in->print(indent + 1, to); } void ast_let::find_free(std::set& into) { definitions.find_free(into); std::set all_free; in->find_free(all_free); for(auto& free_var : all_free) { if(definitions.defs_defn.find(free_var) == definitions.defs_defn.end()) into.insert(free_var); } } type_ptr ast_let::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; definitions.typecheck(mgr, env); return in->typecheck(mgr, definitions.env); } void ast_let::translate(global_scope& scope) { for(auto& def : definitions.defs_data) { def.second->into_globals(scope); } for(auto& def : definitions.defs_defn) { size_t original_params = def.second->params.size(); std::string original_name = def.second->name; auto& global_definition = def.second->into_global(scope); size_t captured = global_definition.params.size() - original_params; type_env_ptr mangled_env = type_scope(env); mangled_env->bind(def.first, env->lookup(def.first), visibility::global); mangled_env->set_mangled_name(def.first, global_definition.name); ast_ptr global_app(new ast_lid(original_name)); global_app->env = mangled_env; for(auto& param : global_definition.params) { if(!(captured--)) break; ast_ptr new_arg(new ast_lid(param)); new_arg->env = env; global_app = ast_ptr(new ast_app(std::move(global_app), std::move(new_arg))); global_app->env = env; } translated_definitions.push_back({ def.first, std::move(global_app) }); } in->translate(scope); } void ast_let::compile(const env_ptr& env, std::vector& into) const { into.push_back(instruction_ptr(new instruction_alloc(translated_definitions.size()))); env_ptr new_env = env; for(auto& def : translated_definitions) { new_env = env_ptr(new env_var(def.first, std::move(new_env))); } int offset = translated_definitions.size() - 1; for(auto& def : translated_definitions) { def.second->compile(new_env, into); into.push_back(instruction_ptr(new instruction_update(offset--))); } in->compile(new_env, into); into.push_back(instruction_ptr(new instruction_slide(translated_definitions.size()))); } void ast_lambda::print(int indent, std::ostream& to) const { print_indent(indent, to); to << "LAMBDA"; for(auto& param : params) { to << " " << param; } to << std::endl; body->print(indent+1, to); } void ast_lambda::find_free(std::set& into) { body->find_free(free_variables); for(auto& param : params) { free_variables.erase(param); } into.insert(free_variables.begin(), free_variables.end()); } type_ptr ast_lambda::typecheck(type_mgr& mgr, type_env_ptr& env) { this->env = env; var_env = type_scope(env); type_ptr return_type = mgr.new_type(); type_ptr full_type = return_type; for(auto it = params.rbegin(); it != params.rend(); it++) { type_ptr param_type = mgr.new_type(); var_env->bind(*it, param_type); full_type = type_ptr(new type_arr(std::move(param_type), full_type)); } mgr.unify(return_type, body->typecheck(mgr, var_env), body->loc); return full_type; } void ast_lambda::translate(global_scope& scope) { std::vector function_params; for(auto& free_variable : free_variables) { if(env->is_global(free_variable)) continue; function_params.push_back(free_variable); } size_t captured_count = function_params.size(); function_params.insert(function_params.end(), params.begin(), params.end()); auto& new_function = scope.add_function("lambda", std::move(function_params), std::move(body)); type_env_ptr mangled_env = type_scope(env); mangled_env->bind("lambda", type_scheme_ptr(nullptr), visibility::global); mangled_env->set_mangled_name("lambda", new_function.name); ast_ptr new_application = ast_ptr(new ast_lid("lambda")); new_application->env = mangled_env; for(auto& param : new_function.params) { if(!(captured_count--)) break; ast_ptr new_arg = ast_ptr(new ast_lid(param)); new_arg->env = env; new_application = ast_ptr(new ast_app(std::move(new_application), std::move(new_arg))); new_application->env = env; } translated = std::move(new_application); } void ast_lambda::compile(const env_ptr& env, std::vector& into) const { translated->compile(env, into); } void pattern_var::print(std::ostream& to) const { to << var; } void pattern_var::find_variables(std::set& into) const { into.insert(var); } void pattern_var::typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const { env->bind(var, t); } void pattern_constr::print(std::ostream& to) const { to << constr; for(auto& param : params) { to << " " << param; } } void pattern_constr::find_variables(std::set& into) const { into.insert(params.begin(), params.end()); } void pattern_constr::typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const { type_scheme_ptr constructor_type_scheme = env->lookup(constr); if(!constructor_type_scheme) { throw type_error("pattern using unknown constructor " + constr, loc); } type_ptr constructor_type = constructor_type_scheme->instantiate(mgr); for(auto& param : params) { type_arr* arr = dynamic_cast(constructor_type.get()); if(!arr) throw type_error("too many parameters in constructor pattern", loc); env->bind(param, arr->left); constructor_type = arr->right; } mgr.unify(t, constructor_type, loc); }