A Hugo incarnation of the blog.
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

primes.txt 2.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. data List = { Nil, Cons Nat List }
  2. data Bool = { True, False }
  3. data Nat = { O, S Nat }
  4. defn ifN c t e = {
  5. case c of {
  6. True -> { t }
  7. False -> { e }
  8. }
  9. }
  10. defn ifL c t e = {
  11. case c of {
  12. True -> { t }
  13. False -> { e }
  14. }
  15. }
  16. defn toInt n = {
  17. case n of {
  18. O -> { 0 }
  19. S np -> { 1 + toInt np }
  20. }
  21. }
  22. defn lte n m = {
  23. case m of {
  24. O -> {
  25. case n of {
  26. O -> { True }
  27. S np -> { False }
  28. }
  29. }
  30. S mp -> {
  31. case n of {
  32. O -> { True }
  33. S np -> { lte np mp }
  34. }
  35. }
  36. }
  37. }
  38. defn minus n m = {
  39. case m of {
  40. O -> { n }
  41. S mp -> {
  42. case n of {
  43. O -> { O }
  44. S np -> {
  45. minus np mp
  46. }
  47. }
  48. }
  49. }
  50. }
  51. defn mod n m = {
  52. ifN (lte m n) (mod (minus n m) m) n
  53. }
  54. defn notDivisibleBy n m = {
  55. case (mod m n) of {
  56. O -> { False }
  57. S mp -> { True }
  58. }
  59. }
  60. defn filter f l = {
  61. case l of {
  62. Nil -> { Nil }
  63. Cons x xs -> { ifL (f x) (Cons x (filter f xs)) (filter f xs) }
  64. }
  65. }
  66. defn map f l = {
  67. case l of {
  68. Nil -> { Nil }
  69. Cons x xs -> { Cons (f x) (map f xs) }
  70. }
  71. }
  72. defn nats = {
  73. Cons (S (S O)) (map S nats)
  74. }
  75. defn primesRec l = {
  76. case l of {
  77. Nil -> { Nil }
  78. Cons p xs -> { Cons p (primesRec (filter (notDivisibleBy p) xs)) }
  79. }
  80. }
  81. defn primes = {
  82. primesRec nats
  83. }
  84. defn take n l = {
  85. case l of {
  86. Nil -> { Nil }
  87. Cons x xs -> {
  88. case n of {
  89. O -> { Nil }
  90. S np -> { Cons x (take np xs) }
  91. }
  92. }
  93. }
  94. }
  95. defn head l = {
  96. case l of {
  97. Nil -> { O }
  98. Cons x xs -> { x }
  99. }
  100. }
  101. defn reverseAcc a l = {
  102. case l of {
  103. Nil -> { a }
  104. Cons x xs -> { reverseAcc (Cons x a) xs }
  105. }
  106. }
  107. defn reverse l = {
  108. reverseAcc Nil l
  109. }
  110. defn main = {
  111. toInt (head (reverse (take ((S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S O))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) primes)))
  112. }