A Hugo incarnation of the blog.
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. data List = { Nil, Cons Nat List }
  2. data Bool = { True, False }
  3. data Nat = { O, S Nat }
  4. defn ifN c t e = {
  5. case c of {
  6. True -> { t }
  7. False -> { e }
  8. }
  9. }
  10. defn ifL c t e = {
  11. case c of {
  12. True -> { t }
  13. False -> { e }
  14. }
  15. }
  16. defn toInt n = {
  17. case n of {
  18. O -> { 0 }
  19. S np -> { 1 + toInt np }
  20. }
  21. }
  22. defn lte n m = {
  23. case m of {
  24. O -> {
  25. case n of {
  26. O -> { True }
  27. S np -> { False }
  28. }
  29. }
  30. S mp -> {
  31. case n of {
  32. O -> { True }
  33. S np -> { lte np mp }
  34. }
  35. }
  36. }
  37. }
  38. defn minus n m = {
  39. case m of {
  40. O -> { n }
  41. S mp -> {
  42. case n of {
  43. O -> { O }
  44. S np -> {
  45. minus np mp
  46. }
  47. }
  48. }
  49. }
  50. }
  51. defn mod n m = {
  52. ifN (lte m n) (mod (minus n m) m) n
  53. }
  54. defn notDivisibleBy n m = {
  55. case (mod m n) of {
  56. O -> { False }
  57. S mp -> { True }
  58. }
  59. }
  60. defn filter f l = {
  61. case l of {
  62. Nil -> { Nil }
  63. Cons x xs -> { ifL (f x) (Cons x (filter f xs)) (filter f xs) }
  64. }
  65. }
  66. defn map f l = {
  67. case l of {
  68. Nil -> { Nil }
  69. Cons x xs -> { Cons (f x) (map f xs) }
  70. }
  71. }
  72. defn nats = {
  73. Cons (S (S O)) (map S nats)
  74. }
  75. defn primesRec l = {
  76. case l of {
  77. Nil -> { Nil }
  78. Cons p xs -> { Cons p (primesRec (filter (notDivisibleBy p) xs)) }
  79. }
  80. }
  81. defn primes = {
  82. primesRec nats
  83. }
  84. defn take n l = {
  85. case l of {
  86. Nil -> { Nil }
  87. Cons x xs -> {
  88. case n of {
  89. O -> { Nil }
  90. S np -> { Cons x (take np xs) }
  91. }
  92. }
  93. }
  94. }
  95. defn head l = {
  96. case l of {
  97. Nil -> { O }
  98. Cons x xs -> { x }
  99. }
  100. }
  101. defn reverseAcc a l = {
  102. case l of {
  103. Nil -> { a }
  104. Cons x xs -> { reverseAcc (Cons x a) xs }
  105. }
  106. }
  107. defn reverse l = {
  108. reverseAcc Nil l
  109. }
  110. defn main = {
  111. toInt (head (reverse (take ((S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S O))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) primes)))
  112. }