blog-static/content/blog/10_compiler_polymorphism.md

4.4 KiB

title date tags draft
Compiling a Functional Language Using C++, Part 10 - Polymorphism 2020-02-29T20:09:37-08:00
C and C++
Functional Languages
Compilers
true

[In part 8]({{< relref "08_compiler_llvm.md" >}}), we wrote some pretty interesting programs in our little language. We successfully expressed arithmetic and recursion. But there's one thing that we cannot express in our language without further changes: an if statement.

Suppose we didn't want to add a special if/else expression into our language. Thanks to lazy evaluation, we can express it using a function:

defn if c t e = {
    case c of {
        True -> { t }
        False -> { e }
    }
}

But an issue still remains: so far, our compiler remains monomorphic. That is, a particular function can only have one possible type for each one of its arguments. With our current setup, something like this {{< sidenote "right" "if-note" "would not work:" >}} In a polymorphically typed language, the inner if would just evaluate to False, and the whole expression to 3. {{< /sidenote >}}

if (if True False True) 11 3

This is because, for this to work, both of the following would need to hold (borrowing some of our notation from the [typechecking]({{< relref "03_compiler_typechecking.md" >}}) post):


\\text{if} : \\text{Int} \\rightarrow \\text{Int}

\\text{if} : \\text{Bool} \\rightarrow \\text{Bool}

But using our rules so far, such a thing is impossible, since there is no way for \(\text{Int}\) to be unified with \(\text{Bool}\). We need a more powerful set of rules to describe our program's types. One such set of rules is the Hindley-Milner type system, which we have previously alluded to. In fact, the rules we came up with were already very close to Hindley-Milner, with the exception of two: generalization and instantiation. It's been quite a while since the last time we worked on typechecking, so I'm going to present a table with these new rules, as well as all of the ones that we previously used. I will also give a quick summary of each of these rules.

Rule Name and Description
{{< latex >}}
\frac
{x:\sigma \in \Gamma}
{\Gamma \vdash x:\sigma}
{{< /latex >}} Var: If the variable \(x\) is known to have some polymorphic type \(\sigma\) then an expression consisting only of that variable is of that type.
{{< latex >}}
\frac
{\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1}
{\Gamma \vdash e_1 ; e_2 : \tau_2}
{{< /latex >}} App: If an expression \(e_1\), which is a function from monomorphic type \(\tau_1\) to another monomorphic type \(\tau_2\), is applied to an argument \(e_2\) of type \(\tau_1\), then the result is of type \(\tau_2\).
{{< latex >}}
\frac
{\Gamma, x:\tau \vdash e : \tau'}
{\Gamma \vdash \lambda x.e : \tau \rightarrow \tau'}
{{< /latex >}} Abs: If the body \(e\) of a lambda abstraction \(\lambda x.e\) is of type \(\tau'\) when \(x\) is of type \(\tau\) then the whole lambda abstraction is of type \(\tau \rightarrow \tau'\).
{{< latex >}}
\frac
{\Gamma \vdash e : \tau \quad \text{matcht}(\tau, p_i) = b_i
\quad \Gamma,b_i \vdash e_i : \tau_c}
{\Gamma \vdash \text{case} ; e ; \text{of} ;
{ (p_1,e_1) \ldots (p_n, e_n) } : \tau_c }
{{< /latex >}} Case: This rule is not part of Hindley-Milner, and is specific to our language. If the expression being case-analyzed is of type \(\tau\) and each branch \((p_i, e_i)\) is of the same type \(\tau_c\) when the pattern \(p_i\) works with type \(\tau\) producing extra bindings \(b_i\), the whole case expression is of type \(\tau_c\).
{{< latex >}}
\frac{\Gamma \vdash e : \sigma \quad \sigma' \sqsubseteq \sigma}
{\Gamma \vdash e : \sigma'}
{{< /latex >}} Inst (New): If type \(\sigma'\) is an instantiation of type \(\sigma\) then an expression of type \(\sigma\) is also an expression of type \(\sigma'\).
{{< latex >}}
\frac
{\Gamma \vdash e : \sigma \quad \alpha \not \in \text{free}(\Gamma)}
{\Gamma \vdash e : \forall \alpha . \sigma}
{{< /latex >}} Gen (New): If an expression has a type with free variables, this rule allows us generalize it to allow all possible types to be used for these free variables.