#### 120 lines 3.0 KiB Prolog Raw Permalink Blame History

 % Here are a bunch of facts describing the Simpson's family tree. % Don't change them! female(mona). female(jackie). female(marge). female(patty). female(selma). female(lisa). female(maggie). female(ling). male(abe). male(clancy). male(herb). male(homer). male(bart). married_(abe,mona). married_(clancy,jackie). married_(homer,marge). married(X,Y) :- married_(X,Y). married(X,Y) :- married_(Y,X). parent(abe,herb). parent(abe,homer). parent(mona,homer). parent(clancy,marge). parent(jackie,marge). parent(clancy,patty). parent(jackie,patty). parent(clancy,selma). parent(jackie,selma). parent(homer,bart). parent(marge,bart). parent(homer,lisa). parent(marge,lisa). parent(homer,maggie). parent(marge,maggie). parent(selma,ling). %% % Part 1. Family relations %% % 1. Define a predicate `child/2` that inverts the parent relationship. child(X, Y) :- parent(Y, X). % 2. Define two predicates `isMother/1` and `isFather/1`. isMother(X) :- female(X), parent(X, _). isFather(X) :- male(X), parent(X, _). % 3. Define a predicate `grandparent/2`. grandparent(X, Y) :- parent(X, Z), parent(Z, Y). % 4. Define a predicate `sibling/2`. Siblings share at least one parent. sibling(X, Y) :- parent(Z, X), parent(Z, Y), X \= Y. % 5. Define two predicates `brother/2` and `sister/2`. brother(X, Y) :- sibling(X, Y), male(X). sister(X, Y) :- sibling(X, Y), female(X). % 6. Define a predicate `siblingInLaw/2`. A sibling-in-law is either married to % a sibling or the sibling of a spouse. siblingInLaw(X, Y) :- married(X, SB), sibling(SB, Y) ; married(Y, SP), sibling(X, SP). % 7. Define two predicates `aunt/2` and `uncle/2`. Your definitions of these % predicates should include aunts and uncles by marriage. aunt(X, Y) :- child(Y, P), (siblingInLaw(X, P) ; sibling(X, P)), female(X). uncle(X, Y) :- child(Y, P), (siblingInLaw(X, P) ; sibling(X, P)), male(X). % 8. Define the predicate `cousin/2`. cousin(X, Y) :- parent(P1, X), parent(P2, Y), siblingInLaw(P1, P2). % 9. Define the predicate `ancestor/2`. ancestor(X, Y) :- parent(X, Y) ; parent(P, Y), ancestor(X, P). % Extra credit: Define the predicate `related/2`. % TODO related(X, X, _). related(X, Y, V) :- not(member(Y, V)), (child(Y, S), related(X, S, [Y|V]) ; parent(Y, C), related(X, C, [Y|V]) ; married(Y, S), related(X, S, [Y|V])). related(X, Y) :- related(X, Y, []), X \= Y. %% % Part 2. Language implementation (see course web page) %% cmd(X) :- number(X). cmd(X) :- string(X). cmd(X) :- bool(X). cmd(add). cmd(lte). cmd(if(X, Y)). prog([X|T]) :- cmd(X), prog(T). prog([]). if(X, Y) :- prog(X), prog(Y). bool(f). bool(t). cmd(X, OS, [X|OS]) :- prog(OS), (number(X) ; string(X) ; bool(X)). cmd(add, [X, Y | OS], [SUM| OS]) :- number(X), number(Y), is(SUM, X + Y). cmd(lte, [X, Y | OS], [t | OS]) :- number(X), number(Y), X =< Y. cmd(lte, [X, Y | OS], [f | OS]) :- number(X), number(Y), X > Y. cmd(if(P1, _), [t | OS], FS) :- prog(P1, OS, FS). cmd(if(_, P2), [f | OS], FS) :- prog(P2, OS, FS). prog([], S, S). prog([C|OP], S, FS) :- cmd(C), prog(OP), cmd(C, S, TS), prog(OP, TS, FS).