This commit is contained in:
Anish Athalye
2018-10-06 09:52:47 -04:00
parent a9d7717cc4
commit da1f8392b1
56 changed files with 2696 additions and 37 deletions

View File

@@ -10,6 +10,11 @@ LIB_SRCFILES := lib/console.c \
lib/string.c \
lib/syscall.c
LIB_SRCFILES := $(LIB_SRCFILES) \
lib/pgfault.c \
lib/pfentry.S \
lib/fork.c \
lib/ipc.c

View File

@@ -18,7 +18,7 @@ getchar(void)
int r;
// sys_cgetc does not block, but getchar should.
while ((r = sys_cgetc()) == 0)
;
sys_yield();
return r;
}

90
lib/fork.c Normal file
View File

@@ -0,0 +1,90 @@
// implement fork from user space
#include <inc/string.h>
#include <inc/lib.h>
// PTE_COW marks copy-on-write page table entries.
// It is one of the bits explicitly allocated to user processes (PTE_AVAIL).
#define PTE_COW 0x800
//
// Custom page fault handler - if faulting page is copy-on-write,
// map in our own private writable copy.
//
static void
pgfault(struct UTrapframe *utf)
{
void *addr = (void *) utf->utf_fault_va;
uint32_t err = utf->utf_err;
int r;
// Check that the faulting access was (1) a write, and (2) to a
// copy-on-write page. If not, panic.
// Hint:
// Use the read-only page table mappings at uvpt
// (see <inc/memlayout.h>).
// LAB 4: Your code here.
// Allocate a new page, map it at a temporary location (PFTEMP),
// copy the data from the old page to the new page, then move the new
// page to the old page's address.
// Hint:
// You should make three system calls.
// LAB 4: Your code here.
panic("pgfault not implemented");
}
//
// Map our virtual page pn (address pn*PGSIZE) into the target envid
// at the same virtual address. If the page is writable or copy-on-write,
// the new mapping must be created copy-on-write, and then our mapping must be
// marked copy-on-write as well. (Exercise: Why do we need to mark ours
// copy-on-write again if it was already copy-on-write at the beginning of
// this function?)
//
// Returns: 0 on success, < 0 on error.
// It is also OK to panic on error.
//
static int
duppage(envid_t envid, unsigned pn)
{
int r;
// LAB 4: Your code here.
panic("duppage not implemented");
return 0;
}
//
// User-level fork with copy-on-write.
// Set up our page fault handler appropriately.
// Create a child.
// Copy our address space and page fault handler setup to the child.
// Then mark the child as runnable and return.
//
// Returns: child's envid to the parent, 0 to the child, < 0 on error.
// It is also OK to panic on error.
//
// Hint:
// Use uvpd, uvpt, and duppage.
// Remember to fix "thisenv" in the child process.
// Neither user exception stack should ever be marked copy-on-write,
// so you must allocate a new page for the child's user exception stack.
//
envid_t
fork(void)
{
// LAB 4: Your code here.
panic("fork not implemented");
}
// Challenge!
int
sfork(void)
{
panic("sfork not implemented");
return -E_INVAL;
}

56
lib/ipc.c Normal file
View File

@@ -0,0 +1,56 @@
// User-level IPC library routines
#include <inc/lib.h>
// Receive a value via IPC and return it.
// If 'pg' is nonnull, then any page sent by the sender will be mapped at
// that address.
// If 'from_env_store' is nonnull, then store the IPC sender's envid in
// *from_env_store.
// If 'perm_store' is nonnull, then store the IPC sender's page permission
// in *perm_store (this is nonzero iff a page was successfully
// transferred to 'pg').
// If the system call fails, then store 0 in *fromenv and *perm (if
// they're nonnull) and return the error.
// Otherwise, return the value sent by the sender
//
// Hint:
// Use 'thisenv' to discover the value and who sent it.
// If 'pg' is null, pass sys_ipc_recv a value that it will understand
// as meaning "no page". (Zero is not the right value, since that's
// a perfectly valid place to map a page.)
int32_t
ipc_recv(envid_t *from_env_store, void *pg, int *perm_store)
{
// LAB 4: Your code here.
panic("ipc_recv not implemented");
return 0;
}
// Send 'val' (and 'pg' with 'perm', if 'pg' is nonnull) to 'toenv'.
// This function keeps trying until it succeeds.
// It should panic() on any error other than -E_IPC_NOT_RECV.
//
// Hint:
// Use sys_yield() to be CPU-friendly.
// If 'pg' is null, pass sys_ipc_try_send a value that it will understand
// as meaning "no page". (Zero is not the right value.)
void
ipc_send(envid_t to_env, uint32_t val, void *pg, int perm)
{
// LAB 4: Your code here.
panic("ipc_send not implemented");
}
// Find the first environment of the given type. We'll use this to
// find special environments.
// Returns 0 if no such environment exists.
envid_t
ipc_find_env(enum EnvType type)
{
int i;
for (i = 0; i < NENV; i++)
if (envs[i].env_type == type)
return envs[i].env_id;
return 0;
}

82
lib/pfentry.S Normal file
View File

@@ -0,0 +1,82 @@
#include <inc/mmu.h>
#include <inc/memlayout.h>
// Page fault upcall entrypoint.
// This is where we ask the kernel to redirect us to whenever we cause
// a page fault in user space (see the call to sys_set_pgfault_handler
// in pgfault.c).
//
// When a page fault actually occurs, the kernel switches our ESP to
// point to the user exception stack if we're not already on the user
// exception stack, and then it pushes a UTrapframe onto our user
// exception stack:
//
// trap-time esp
// trap-time eflags
// trap-time eip
// utf_regs.reg_eax
// ...
// utf_regs.reg_esi
// utf_regs.reg_edi
// utf_err (error code)
// utf_fault_va <-- %esp
//
// If this is a recursive fault, the kernel will reserve for us a
// blank word above the trap-time esp for scratch work when we unwind
// the recursive call.
//
// We then have call up to the appropriate page fault handler in C
// code, pointed to by the global variable '_pgfault_handler'.
.text
.globl _pgfault_upcall
_pgfault_upcall:
// Call the C page fault handler.
pushl %esp // function argument: pointer to UTF
movl _pgfault_handler, %eax
call *%eax
addl $4, %esp // pop function argument
// Now the C page fault handler has returned and you must return
// to the trap time state.
// Push trap-time %eip onto the trap-time stack.
//
// Explanation:
// We must prepare the trap-time stack for our eventual return to
// re-execute the instruction that faulted.
// Unfortunately, we can't return directly from the exception stack:
// We can't call 'jmp', since that requires that we load the address
// into a register, and all registers must have their trap-time
// values after the return.
// We can't call 'ret' from the exception stack either, since if we
// did, %esp would have the wrong value.
// So instead, we push the trap-time %eip onto the *trap-time* stack!
// Below we'll switch to that stack and call 'ret', which will
// restore %eip to its pre-fault value.
//
// In the case of a recursive fault on the exception stack,
// note that the word we're pushing now will fit in the
// blank word that the kernel reserved for us.
//
// Throughout the remaining code, think carefully about what
// registers are available for intermediate calculations. You
// may find that you have to rearrange your code in non-obvious
// ways as registers become unavailable as scratch space.
//
// LAB 4: Your code here.
// Restore the trap-time registers. After you do this, you
// can no longer modify any general-purpose registers.
// LAB 4: Your code here.
// Restore eflags from the stack. After you do this, you can
// no longer use arithmetic operations or anything else that
// modifies eflags.
// LAB 4: Your code here.
// Switch back to the adjusted trap-time stack.
// LAB 4: Your code here.
// Return to re-execute the instruction that faulted.
// LAB 4: Your code here.

37
lib/pgfault.c Normal file
View File

@@ -0,0 +1,37 @@
// User-level page fault handler support.
// Rather than register the C page fault handler directly with the
// kernel as the page fault handler, we register the assembly language
// wrapper in pfentry.S, which in turns calls the registered C
// function.
#include <inc/lib.h>
// Assembly language pgfault entrypoint defined in lib/pfentry.S.
extern void _pgfault_upcall(void);
// Pointer to currently installed C-language pgfault handler.
void (*_pgfault_handler)(struct UTrapframe *utf);
//
// Set the page fault handler function.
// If there isn't one yet, _pgfault_handler will be 0.
// The first time we register a handler, we need to
// allocate an exception stack (one page of memory with its top
// at UXSTACKTOP), and tell the kernel to call the assembly-language
// _pgfault_upcall routine when a page fault occurs.
//
void
set_pgfault_handler(void (*handler)(struct UTrapframe *utf))
{
int r;
if (_pgfault_handler == 0) {
// First time through!
// LAB 4: Your code here.
panic("set_pgfault_handler not implemented");
}
// Save handler pointer for assembly to call.
_pgfault_handler = handler;
}

View File

@@ -26,6 +26,8 @@ static const char * const error_string[MAXERROR] =
[E_NO_MEM] = "out of memory",
[E_NO_FREE_ENV] = "out of environments",
[E_FAULT] = "segmentation fault",
[E_IPC_NOT_RECV]= "env is not recving",
[E_EOF] = "unexpected end of file",
};
/*

View File

@@ -61,3 +61,53 @@ sys_getenvid(void)
return syscall(SYS_getenvid, 0, 0, 0, 0, 0, 0);
}
void
sys_yield(void)
{
syscall(SYS_yield, 0, 0, 0, 0, 0, 0);
}
int
sys_page_alloc(envid_t envid, void *va, int perm)
{
return syscall(SYS_page_alloc, 1, envid, (uint32_t) va, perm, 0, 0);
}
int
sys_page_map(envid_t srcenv, void *srcva, envid_t dstenv, void *dstva, int perm)
{
return syscall(SYS_page_map, 1, srcenv, (uint32_t) srcva, dstenv, (uint32_t) dstva, perm);
}
int
sys_page_unmap(envid_t envid, void *va)
{
return syscall(SYS_page_unmap, 1, envid, (uint32_t) va, 0, 0, 0);
}
// sys_exofork is inlined in lib.h
int
sys_env_set_status(envid_t envid, int status)
{
return syscall(SYS_env_set_status, 1, envid, status, 0, 0, 0);
}
int
sys_env_set_pgfault_upcall(envid_t envid, void *upcall)
{
return syscall(SYS_env_set_pgfault_upcall, 1, envid, (uint32_t) upcall, 0, 0, 0);
}
int
sys_ipc_try_send(envid_t envid, uint32_t value, void *srcva, int perm)
{
return syscall(SYS_ipc_try_send, 0, envid, value, (uint32_t) srcva, perm, 0);
}
int
sys_ipc_recv(void *dstva)
{
return syscall(SYS_ipc_recv, 1, (uint32_t)dstva, 0, 0, 0, 0);
}