collar/collar.cpp

212 lines
6.2 KiB
C++

// Hello LoRa - ABP TTN Packet Sender (Multi-Channel)
// Tutorial Link: https://learn.adafruit.com/the-things-network-for-feather/using-a-feather-32u4
//
// Adafruit invests time and resources providing this open source code.
// Please support Adafruit and open source hardware by purchasing
// products from Adafruit!
//
// Copyright 2015, 2016 Ideetron B.V.
//
// Modified by Brent Rubell for Adafruit Industries, 2018
/************************** Configuration ***********************************/
#include <TinyLoRa.h>
#include <SPI.h>
#include "gateway/message.pb.h"
#include "pb_common.h"
#include "pb.h"
#include "pb_encode.h"
#include "pb_decode.h"
#include "gateway/message.pb.h"
// Visit your thethingsnetwork.org device console
// to create an account, or if you need your session keys.
// Network Session Key (MSB)
uint8_t NwkSkey[16] = {0x52, 0x92, 0xC0, 0x72, 0x2D, 0x3C, 0x55, 0x5E, 0xE4, 0xB9, 0x9E, 0x9B, 0x88, 0x66, 0x47, 0xF1};
// Application Session Key (MSB)
uint8_t AppSkey[16] = {0xC4, 0x30, 0xEF, 0x56, 0x4F, 0x6D, 0xA2, 0x56, 0x1F, 0x15, 0x2F, 0xB8, 0x62, 0xC7, 0xCA, 0xC2};
// Device Address (MSB)
uint8_t DevAddr[4] = {0x26, 0x02, 0x12, 0xB6};
/************************** Example Begins Here ***********************************/
// Data Packet to Send to TTN
unsigned char loraData[50] = {"hello LoRa"};
// How many times data transfer should occur, in seconds
const unsigned int sendInterval = 30;
// Pinout for Adafruit Feather 32u4 LoRa
TinyLoRa lora = TinyLoRa(2, 10, 9);
// Pinout for Adafruit Feather M0 LoRa
//TinyLoRa lora = TinyLoRa(3, 8, 4);
const uint8_t N_POLY_MAX=100;
float polyx[N_POLY_MAX];
float polyy[N_POLY_MAX];
int n_poly=0;
int push_vert(float x, float y) {
if(n_poly>N_POLY_MAX)
return 0;
polyx[n_poly]=x;
polyy[n_poly]=y;
n_poly++;
return 1;
}
void clear_verts() {
n_poly=0;
}
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{ //from stack overflow
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
int check_bounds(float x, float y) {
return pnpoly(n_poly, polyx, polyy, x, y);
}
bool Fenceless_Coordinates_callback(pb_istream_t *stream, const pb_field_iter_t *field, void **arg) {
Serial.println("Called");
while(stream->bytes_left) {
Fenceless_Coordinate m = Fenceless_Coordinate_init_zero;
if(!pb_decode(stream, Fenceless_Coordinate_fields, &m)) {
return false;
}
push_vert(m.x,m.y);
return true;
}
}
void import_protobuf(uint8_t *protobuffer, uint32_t size) {
Fenceless_Coordinates m;
pb_istream_t stream = pb_istream_from_buffer(protobuffer, size);
int status = pb_decode(&stream, Fenceless_Coordinates_fields, &m);
if(!status){
Serial.println("Failed to decode");
}
clear_verts();
switch(m.isr) {
case 10:
push_vert(m.coord9.x, m.coord9.y);
case 9:
push_vert(m.coord8.x, m.coord8.y);
case 8:
push_vert(m.coord7.x, m.coord7.y);
case 7:
push_vert(m.coord6.x, m.coord6.y);
case 6:
push_vert(m.coord5.x, m.coord5.y);
case 5:
push_vert(m.coord4.x, m.coord4.y);
case 4:
push_vert(m.coord3.x, m.coord3.y);
case 3:
push_vert(m.coord2.x, m.coord2.y);
push_vert(m.coord1.x, m.coord1.y);
push_vert(m.coord0.x, m.coord0.y);
}
}
bool Fenceless_Coordinates_encode(pb_ostream_t *stream, const pb_field_iter_t *field, void * const * arg) {
Serial.println("Encode called");
return false;
Fenceless_Coordinate c = *(Fenceless_Coordinate*)field->pData;
if(!pb_encode_tag_for_field(stream, field)) {
return false;
}
return pb_encode(stream, Fenceless_Coordinate_fields, field);
}
void test() {
Serial.println("Testing protobuf");
uint8_t buffer[100] = {0};
Fenceless_Coordinates m = Fenceless_Coordinates_init_zero;
pb_ostream_t stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
int status = pb_encode(&stream, Fenceless_Coordinates_fields, &m);
if(!status){
Serial.println("Failed to encode");
}
import_protobuf(buffer, sizeof(buffer));
}
int recieved = 0;
void on_recieve(int n) {
recieved = 1;
}
void setup()
{
delay(2000);
Serial.begin(9600);
while (! Serial);
delay(4000);
// Initialize pin LED_BUILTIN as an output
pinMode(LED_BUILTIN, OUTPUT);
// Initialize LoRa
Serial.print("Starting LoRa...");
// define multi-channel sending
lora.setChannel(MULTI);
// set datarate
lora.setDatarate(SF7BW125);
if(!lora.begin())
{
Serial.println("Failed");
Serial.println("Check your radio");
while(true);
}
Fenceless_Coordinates coords;
coords.isr = 10;
coords.coord0.x = 1; coords.coord0.y = 2;
coords.coord1.x = 1; coords.coord1.y = 2;
coords.coord2.x = 1; coords.coord2.y = 2;
coords.coord3.x = 1; coords.coord3.y = 2;
coords.coord4.x = 1; coords.coord4.y = 2;
coords.coord5.x = 1; coords.coord5.y = 2;
coords.coord6.x = 1; coords.coord6.y = 2;
coords.coord7.x = 1; coords.coord7.y = 2;
coords.coord8.x = 1; coords.coord8.y = 2;
coords.coord9.x = 1; coords.coord9.y = 2;
pb_ostream_t stream;
stream = pb_ostream_from_buffer(loraData, sizeof(loraData));
int err = pb_encode(&stream, Fenceless_Coordinates_fields, &coords);
// Optional set transmit power. If not set default is +17 dBm.
// Valid options are: -80, 1 to 17, 20 (dBm).
// For safe operation in 20dBm: your antenna must be 3:1 VWSR or better
// and respect the 1% duty cycle.
lora.setPower(1);
Serial.println("OK");
}
void loop()
{
Serial.println("Sending LoRa Data...");
lora.sendData(loraData, sizeof(loraData), lora.frameCounter);
// Optionally set the Frame Port (1 to 255)
// uint8_t framePort = 1;
// lora.sendData(loraData, sizeof(loraData), lora.frameCounter, framePort);
Serial.print("Frame Counter: ");Serial.println(lora.frameCounter);
lora.frameCounter++;
// blink LED to indicate packet sent
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
Serial.println("delaying...");
if(recieved) {
Serial.println("Recieved something");
} else {
Serial.println("Nothing yet");
}
delay(sendInterval * 1000);
}