Finalize slides given timing constraints

Signed-off-by: Danila Fedorin <daniel.fedorin@hpe.com>
This commit is contained in:
Danila Fedorin
2025-10-10 13:05:15 -07:00
parent 86f1ba686a
commit 6ccf99656c
4 changed files with 780 additions and 716 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB

View File

@@ -235,6 +235,354 @@ There is no runtime overhead!
<!-- _class: lead -->
# Linear Multi-Step Method Approximator
![](./linear-multistep.png)
---
<!-- _class: lead -->
# Type-Safe `printf`
---
# The `printf` Function
The `printf` function accepts a format string, followed by a variable number of arguments that should match:
```C
// totally fine:
printf("Hello, %s! Your ChapelCon submission is #%d\n", "Daniel", 18);
// not good:
printf("Hello, %s! Your ChapelCon submission is #%d\n", 18, "Daniel");
```
Can we define a `printf` function in Chapel that is type-safe?
---
# Yet Another Type-Level List
- The general idea for type-safe `printf`: take the format string, and extract a list of the expected argument types.
- To make for nicer error messages, include a human-readable description of each type in the list.
- I've found it more convenient to re-define lists for various problems when needed, rather than having a single canonical list definition.
```chapel
record _nil {
proc type length param do return 0;
}
record _cons {
type expectedType; // type of the argument to printf
param name: string; // human-readable name of the type
type rest;
proc type length param do return 1 + rest.length();
}
```
---
# Extracting Types from Format Strings
```Chapel
proc specifiers(param s: string, param i: int = 0) type {
if i >= s.size then return _nil;
if s[i] == "%" {
if i + 1 >= s.size then
compilerError("Invalid format string: unterminted %");
select s[i + 1] {
when "%" do return specifiers(s, i + 2);
when "s" do return _cons(string, "a string", specifiers(s, i + 2));
when "i" do return _cons(int, "a signed integer", specifiers(s, i + 2));
when "u" do return _cons(uint, "an unsigned integer", specifiers(s, i + 2));
when "n" do return _cons(numeric, "a numeric value", specifiers(s, i + 2));
otherwise do compilerError("Invalid format string: unknown format type");
}
} else {
return specifiers(s, i + 1);
}
}
```
---
# Extracting Types from Format Strings
Let's give it a quick try:
```Chapel
writeln(specifiers("Hello, %s! Your ChapelCon submission is #%i\n") : string);
```
The above prints:
```Chapel
_cons(string,"a string",_cons(int(64),"a signed integer",_nil))
```
---
# Validating Argument Types
* The Chapel standard library has a nice `isSubtype` function that we can use to check if an argument matches the expected type.
* Suppose the `.length` of our type specifiers matches the number of arguments to `printf`
* Chapel doesn't currently support empty tuples, so if the lengths match, we know that `specifiers` is non-empty.
* Then, we can validate the types as follows:
```Chapel
proc validate(type specifiers: _cons(?t, ?s, ?rest), type argTup, param idx) {
if !isSubtype(argTup[idx], t) then
compilerError("Argument " + (idx + 1) : string + " should be " + s + " but got " + argTup[idx]:string, idx+2);
if idx + 1 < argTup.size then
validate(rest, argTup, idx + 1);
}
```
* The `idx+2` argument to `compilerError` avoids printing the recursive `validate` calls in the error message.
---
# The `fprintln` overloads
* I named it `fprintln` for "formatted print line".
* To support the empty-specifier case (Chapel varargs don't allow zero arguments):
```Chapel
proc fprintln(param format: string) where specifiers(format).length == 0 {
writeln(format);
}
```
* If we do have type specifiers, to ensure our earlier assumption of `size` matching:
```Chapel
proc fprintln(param format: string, args...)
where specifiers(format).length != args.size {
compilerError("'fprintln' with this format string expects " +
specifiers(format).length : string +
" argument(s) but got " + args.size : string);
}
```
---
# The `fprintln` overloads
* All that's left is the main `fprintln` implementation:
```Chapel
proc fprintln(param format: string, args...) {
validate(specifiers(format), args.type, 0);
writef(format + "\n", (...args));
}
```
---
# Using `fprintln`
```Chapel
fprintln("Hello, world!"); // fine, prints "Hello, world!"
fprintln("The answer is %i", 42); // fine, prints "The answer is 42"
// compiler error: Argument 3 should be a string but got int(64)
fprintln("The answer is %i %i %s", 1, 2, 3);
```
More work could be done to support more format specifiers, escapes, etc., but the basic idea is there.
---
<!-- _class: lead -->
# Beyond Lists
---
# Beyond Lists
* I made grand claims earlier
- "Write functional-ish program at the type level!"
* So far, we've just used lists and some recursion.
* Is that all there is?
---
# Algebraic Data Types
* The kinds of data types that Haskell supports are called *algebraic data types*.
* At a fundamental level, they can be built up from two operations: _Cartesian product_ and _disjoint union_.
* There are other concepts to build recursive data types, but we won't need them in Chapel.
- To prove to you I know what I'm talking about, some jargon:
_initial algebras_, _the fixedpoint functor_, _catamorphisms_...
- Check out _Bananas, Lenses, Envelopes and Barbed Wire_ by Meijer et al. for more.
* __Claim__: Chapel supports disjoint union and Cartesian product, so we can build any data type that Haskell can.
---
<style scoped>
li:nth-child(3) { color: lightgrey; }
</style>
# Algebraic Data Types
- The kinds of data types that Haskell supports are called *algebraic data types*.
- At a fundamental level, they can be built up from two operations: _Cartesian product_ and _disjoint union_.
- There are other concepts to build recursive data types, but we won't need them in Chapel.
- To prove to you I know what I'm talking about, some jargon:
_initial algebras_, _the fixedpoint functor_, _catamorphisms_...
- Check out _Bananas, Lenses, Envelopes and Barbed Wire_ by Meijer et al. for more.
- __Claim__: Haskell supports disjoint union and Cartesian product, so we can build any data type that Haskell can.
---
# A General Recipe
To translate a Haskell data type definition to Chapel:
* For each constructor, define a `record` with that constructor's name
* The fields of that record are `type` fields for each argument of the constructor
- If the argument is a value (like `Int`), you can make it a `param` field instead
* A visual example, again:
<div class="side-by-side">
<div>
```Chapel
record C1 { type arg1; /* ... */ type argi; }
// ...
record Cn { type arg1; /* ... */ type argj; }
```
</div>
<div>
```Haskell
data T = C1 arg1 ... argi
| ...
| Cn arg1 ... argj
```
</div>
</div>
---
# Inserting and Looking Up in a BST
<div class="side-by-side">
<div>
```Chapel
proc insert(type t: Empty, param x: int) type do return Node(x, Empty, Empty);
proc insert(type t: Node(?v, ?left, ?right), param x: int) type do
select true {
when x < v do return Node(v, insert(left, x), right);
otherwise do return Node(v, left, insert(right, x));
}
type test = insert(insert(insert(Empty, 2), 1), 3);
proc lookup(type t: Empty, param x: int) param do return false;
proc lookup(type t: Node(?v, ?left, ?right), param x: int) param do
select true {
when x == v do return true;
when x < v do return lookup(left, x);
otherwise do return lookup(right, x);
}
```
</div>
<div>
```Haskell
insert :: Int -> BSTree -> BSTree
insert x Empty = Node x Empty Empty
insert x (Node v left right)
| x < v = Node v (insert x left) right
| otherwise = Node v left (insert x right)
test = insert 3 (insert 1 (insert 2 Empty))
lookup :: Int -> BSTree -> Bool
lookup x Empty = False
lookup x (Node v left right)
| x == v = True
| x < v = lookup x left
| otherwise = lookup x right
```
</div>
</div>
It really works!
```Chapel
writeln(test : string);
// prints Node(2,Node(1,Empty,Empty),Node(3,Empty,Empty))
writeln(lookup(test, 1));
// prints true for this one, but false for '4'
```
---
# A Key-Value Map
```Chapel
record Empty {}
record Node { param key: int; param value; type left; type right; }
proc insert(type t: Empty, param k: int, param v) type do return Node(k, v, Empty, Empty);
proc insert(type t: Node(?k, ?v, ?left, ?right), param nk: int, param nv) type do
select true {
when nk < k do return Node(k, v, insert(left, nk, nv), right);
otherwise do return Node(k, v, left, insert(right, nk, nv));
}
proc lookup(type t: Empty, param k: int) param do return "not found";
proc lookup(type t: Node(?k, ?v, ?left, ?right), param x: int) param do
select true {
when x == k do return v;
when x < k do return lookup(left, x);
otherwise do return lookup(right, x);
}
type test = insert(insert(insert(Empty, 2, "two"), 1, "one"), 3, "three");
writeln(lookup(test, 1)); // prints "one"
writeln(lookup(test, 3)); // prints "three"
writeln(lookup(test, 4)); // prints "not found"
```
---
# Conclusion
* Chapel's type-level programming is surprisingly powerful.
* We can write compile-time programs that are very similar to Haskell programs.
* This allows us to write highly parameterized code without paying runtime overhead.
* This also allows us to devise powerful compile-time checks and constraints on our code.
* This approach allows for general-purpose programming, which can be applied to `your use-case`
---
<!-- _class: lead -->
# Extra Slides
---
<!-- _class: lead -->
# Linear Multi-Step Method Approximator
---
# Euler's Method
@@ -433,210 +781,6 @@ We can now construct solvers for any explicit Adams-Bashforth method, without wr
---
<!-- _class: lead -->
# Type-Safe `printf`
---
# The `printf` Function
The `printf` function accepts a format string, followed by a variable number of arguments that should match:
```C
// totally fine:
printf("Hello, %s! Your ChapelCon submission is #%d\n", "Daniel", 18);
// not good:
printf("Hello, %s! Your ChapelCon submission is #%d\n", 18, "Daniel");
```
Can we define a `printf` function in Chapel that is type-safe?
---
# Yet Another Type-Level List
- The general idea for type-safe `printf`: take the format string, and extract a list of the expected argument types.
- To make for nicer error messages, include a human-readable description of each type in the list.
- I've found it more convenient to re-define lists for various problems when needed, rather than having a single canonical list definition.
```chapel
record _nil {
proc type length param do return 0;
}
record _cons {
type expectedType; // type of the argument to printf
param name: string; // human-readable name of the type
type rest;
proc type length param do return 1 + rest.length();
}
```
---
# Extracting Types from Format Strings
```Chapel
proc specifiers(param s: string, param i: int = 0) type {
if i >= s.size then return _nil;
if s[i] == "%" {
if i + 1 >= s.size then
compilerError("Invalid format string: unterminted %");
select s[i + 1] {
when "%" do return specifiers(s, i + 2);
when "s" do return _cons(string, "a string", specifiers(s, i + 2));
when "i" do return _cons(int, "a signed integer", specifiers(s, i + 2));
when "u" do return _cons(uint, "an unsigned integer", specifiers(s, i + 2));
when "n" do return _cons(numeric, "a numeric value", specifiers(s, i + 2));
otherwise do compilerError("Invalid format string: unknown format type");
}
} else {
return specifiers(s, i + 1);
}
}
```
---
# Extracting Types from Format Strings
Let's give it a quick try:
```Chapel
writeln(specifiers("Hello, %s! Your ChapelCon submission is #%i\n") : string);
```
The above prints:
```Chapel
_cons(string,"a string",_cons(int(64),"a signed integer",_nil))
```
---
# Validating Argument Types
* The Chapel standard library has a nice `isSubtype` function that we can use to check if an argument matches the expected type.
* Suppose the `.length` of our type specifiers matches the number of arguments to `printf`
* Chapel doesn't currently support empty tuples, so if the lengths match, we know that `specifiers` is non-empty.
* Then, we can validate the types as follows:
```Chapel
proc validate(type specifiers: _cons(?t, ?s, ?rest), type argTup, param idx) {
if !isSubtype(argTup[idx], t) then
compilerError("Argument " + (idx + 1) : string + " should be " + s + " but got " + argTup[idx]:string, idx+2);
if idx + 1 < argTup.size then
validate(rest, argTup, idx + 1);
}
```
* The `idx+2` argument to `compilerError` avoids printing the recursive `validate` calls in the error message.
---
# The `fprintln` overloads
* I named it `fprintln` for "formatted print line".
* To support the empty-specifier case (Chapel varargs don't allow zero arguments):
```Chapel
proc fprintln(param format: string) where specifiers(format).length == 0 {
writeln(format);
}
```
* If we do have type specifiers, to ensure our earlier assumption of `size` matching:
```Chapel
proc fprintln(param format: string, args...)
where specifiers(format).length != args.size {
compilerError("'fprintln' with this format string expects " +
specifiers(format).length : string +
" argument(s) but got " + args.size : string);
}
```
---
# The `fprintln` overloads
* All that's left is the main `fprintln` implementation:
```Chapel
proc fprintln(param format: string, args...) {
validate(specifiers(format), args.type, 0);
writef(format + "\n", (...args));
}
```
---
# Using `fprintln`
```Chapel
fprintln("Hello, world!"); // fine, prints "Hello, world!"
fprintln("The answer is %i", 42); // fine, prints "The answer is 42"
// compiler error: Argument 3 should be a string but got int(64)
fprintln("The answer is %i %i %s", 1, 2, 3);
```
More work could be done to support more format specifiers, escapes, etc., but the basic idea is there.
---
<!-- _class: lead -->
# Beyond Lists
---
# Beyond Lists
* I made grand claims earlier
- "Write functional-ish program at the type level!"
* So far, we've just used lists and some recursion.
* Is that all there is?
---
# Algebraic Data Types
* The kinds of data types that Haskell supports are called *algebraic data types*.
* At a fundamental level, they can be built up from two operations: _Cartesian product_ and _disjoint union_.
* There are other concepts to build recursive data types, but we won't need them in Chapel.
- To prove to you I know what I'm talking about, some jargon:
_initial algebras_, _the fixedpoint functor_, _catamorphisms_...
- Check out _Bananas, Lenses, Envelopes and Barbed Wire_ by Meijer et al. for more.
* __This matters because, if Chapel has these operations, we can build any data type that Haskell can.__
---
<style scoped>
li:nth-child(3) { color: lightgrey; }
</style>
# Algebraic Data Types
- The kinds of data types that Haskell supports are called *algebraic data types*.
- At a fundamental level, they can be built up from two operations: _Cartesian product_ and _disjoint union_.
- There are other concepts to build recursive data types, but we won't need them in Chapel.
- To prove to you I know what I'm talking about, some jargon:
_initial algebras_, _the fixedpoint functor_, _catamorphisms_...
- Check out _Bananas, Lenses, Envelopes and Barbed Wire_ by Meijer et al. for more.
- __This matters because, if Chapel has these operations, we can build any data type that Haskell can.__
---
# Cartesian Product
For any two types, the _Cartesian product_ of these two types defines all pairs of values from these types.
- This is like a two-element tuple _at the value level_ in Chapel.
@@ -853,133 +997,3 @@ balancedOneTwoThree' = InR (2 `MkPair` (InR (1 `MkPair` (InL MkUnit `MkPair` InL
---
# A General Recipe
To translate a Haskell data type definition to Chapel:
* For each constructor, define a `record` with that constructor's name
* The fields of that record are `type` fields for each argument of the constructor
- If the argument is a value (like `Int`), you can make it a `param` field instead
* A visual example, again:
<div class="side-by-side">
<div>
```Chapel
record C1 { type arg1; /* ... */ type argi; }
// ...
record Cn { type arg1; /* ... */ type argj; }
```
</div>
<div>
```Haskell
data T = C1 arg1 ... argi
| ...
| Cn arg1 ... argj
```
</div>
</div>
---
# Inserting and Looking Up in a BST
<div class="side-by-side">
<div>
```Chapel
proc insert(type t: Empty, param x: int) type do return Node(x, Empty, Empty);
proc insert(type t: Node(?v, ?left, ?right), param x: int) type do
select true {
when x < v do return Node(v, insert(left, x), right);
otherwise do return Node(v, left, insert(right, x));
}
type test = insert(insert(insert(Empty, 2), 1), 3);
proc lookup(type t: Empty, param x: int) param do return false;
proc lookup(type t: Node(?v, ?left, ?right), param x: int) param do
select true {
when x == v do return true;
when x < v do return lookup(left, x);
otherwise do return lookup(right, x);
}
```
</div>
<div>
```Haskell
insert :: Int -> BSTree -> BSTree
insert x Empty = Node x Empty Empty
insert x (Node v left right)
| x < v = Node v (insert x left) right
| otherwise = Node v left (insert x right)
test = insert 3 (insert 1 (insert 2 Empty))
lookup :: Int -> BSTree -> Bool
lookup x Empty = False
lookup x (Node v left right)
| x == v = True
| x < v = lookup x left
| otherwise = lookup x right
```
</div>
</div>
It really works!
```Chapel
writeln(test : string);
// prints Node(2,Node(1,Empty,Empty),Node(3,Empty,Empty))
writeln(lookup(test, 1));
// prints true for this one, but false for '4'
```
---
# A Key-Value Map
```Chapel
record Empty {}
record Node { param key: int; param value; type left; type right; }
proc insert(type t: Empty, param k: int, param v) type do return Node(k, v, Empty, Empty);
proc insert(type t: Node(?k, ?v, ?left, ?right), param nk: int, param nv) type do
select true {
when nk < k do return Node(k, v, insert(left, nk, nv), right);
otherwise do return Node(k, v, left, insert(right, nk, nv));
}
proc lookup(type t: Empty, param k: int) param do return "not found";
proc lookup(type t: Node(?k, ?v, ?left, ?right), param x: int) param do
select true {
when x == k do return v;
when x < k do return lookup(left, x);
otherwise do return lookup(right, x);
}
type test = insert(insert(insert(Empty, 2, "two"), 1, "one"), 3, "three");
writeln(lookup(test, 1)); // prints "one"
writeln(lookup(test, 3)); // prints "three"
writeln(lookup(test, 4)); // prints "not found"
```
---
# Conclusion
* Chapel's type-level programming is surprisingly powerful.
* We can write compile-time programs that are very similar to Haskell programs.
* This allows us to write highly parameterized code without paying runtime overhead.
* This also allows us to devise powerful compile-time checks and constraints on our code.
* This approach allows for general-purpose programming, which can be applied to `your use-case`